2,185
Views
3
CrossRef citations to date
0
Altmetric
Review

Impact of glyphosate (RoundupTM) on the composition and functionality of the gut microbiome

, & ORCID Icon
Article: 2263935 | Received 14 Mar 2023, Accepted 24 Sep 2023, Published online: 06 Oct 2023

References

  • Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Europe. 2016;28(1):1–16. doi:10.1186/s12302-016-0070-0.
  • Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P, Pandey A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ Res. 2021;194:110664. doi:10.1016/j.envres.2020.110664.
  • Hawkins C., and Hanson C. Glyphosate: response to comments, usage and benefits. Office of Chemical Safety and Pollution Prevention; 2019.
  • Duke SO. Interaction of chemical pesticides and their formulation ingredients with microbes associated with plants and plant pests. J Agr Food Chem. 2018;66(29):7553–7561. doi:10.1021/acs.jafc.8b02316.
  • Do MH, Florea A, Farre C, Bonhomme A, Bessueille F, Vocanson F, Tran-Thi N, Jaffrezic-Renault N. Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide. Int J Environ Anal Chem. 2015;95(15):1489–1501. doi:10.1080/03067319.2015.1114109.
  • Majewski MS, Coupe RH, Foreman WT, Capel PD. Pesticides in Mississippi air and rain: a comparison between 1995 and 2007. Environ Toxicol Chem. 2014;33(6):1283–1293. doi:10.1002/etc.2550.
  • Liang Y, Sun W, Zhu Y-G, Christie P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut. 2007;147(2):422–428. doi:10.1016/j.envpol.2006.06.008.
  • Chang F, Simcik MF, Capel PD. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere. Environ Toxicol Chem. 2011;30(3):548–555. doi:10.1002/etc.431.
  • van Bruggen AHC, Finckh MR, He M, Ritsema CJ, Harkes P, Knuth D, Geissen V. Indirect effects of the herbicide glyphosate on plant, animal and human health through its effects on microbial communities. Front Environ Sci. 2021;9:9. doi:10.3389/fenvs.2021.763917.
  • Williams GM, Aardema M, Acquavella J, Berry SC, Brusick D, Burns MM, de Camargo JLV, Garabrant D, Greim HA, Kier LD. A review of the carcinogenic potential of glyphosate by four independent expert panels and comparison to the IARC assessment. Crit Rev Toxicol. 2016;46(sup1):3–20. doi:10.1080/10408444.2016.1214677.
  • EFSA. Peer review of the pesticide risk assessment of the potential endocrine disrupting properties of glyphosate. EFSA J. 2017;15:e04979.
  • Rueda-Ruzafa L, Cruz F, Roman P, Cardona D. Gut microbiota and neurological effects of glyphosate. Neurotoxicology. 2019;75:1–8. doi:10.1016/j.neuro.2019.08.006.
  • EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015;13:4302.
  • Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017;46(4):562–576. doi:10.1016/j.immuni.2017.04.008.
  • Heiss CN, Olofsson LE. Gut microbiota-dependent modulation of energy metabolism. J Innate Immun. 2018;10(3):163–171. doi:10.1159/000481519.
  • Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SRH, Sun H, Zhang C. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Front Cell Infect Microbiol. 2021;11:1273. doi:10.3389/fcimb.2021.716299.
  • Patterson E, Cryan JF, Fitzgerald GF, Ross RP, Dinan TG, Stanton C. Gut microbiota, the pharmabiotics they produce and host health. Proc Nutr Soc. 2014;73(4):477–489. doi:10.1017/S0029665114001426.
  • O’Sullivan JN, Rea MC, Hill C, Ross RP. Protecting the outside: biological tools to manipulate the skin microbiota. FEMS Microbiol Ecol. 2020;96(6):fiaa085. doi:10.1093/femsec/fiaa085.
  • Dang AT, Marsland BJ. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019;12(4):843–850. doi:10.1038/s41385-019-0160-6.
  • Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877–2013. doi:10.1152/physrev.00018.2018.
  • Cénit MC, Matzaraki V, Tigchelaar EF, Zhernakova A. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta - Mol Basis Dis. 2014;1842(10):1981–1992. doi:10.1016/j.bbadis.2014.05.023.
  • Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26(1):26191. doi:10.3402/mehd.v26.26191.
  • Claesson MJ, Jeffery IB, Conde S, Power SE, O’connor EM, Cusack S, Harris H, Coakley M, Lakshminarayanan B, O’sullivan O. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–184. doi:10.1038/nature11319.
  • Erlandson KM, Liu J, Johnson R, Dillon S, Jankowski CM, Kroehl M, Robertson CE, Frank DN, Tuncil Y, Higgins J. An exercise intervention alters stool microbiota and metabolites among older, sedentary adults. Ther Adv Infect Dis. 2021;8:20499361211027068. doi:10.1177/20499361211027067.
  • Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019;216(1):20–40. doi:10.1084/jem.20180448.
  • Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. Bmj. 2018;360:j5145. doi:10.1136/bmj.j5145.
  • Mirza A, Mao-Draayer Y. The gut microbiome and microbial translocation in multiple sclerosis. Cl Immunol. 2017;183:213–224. doi:10.1016/j.clim.2017.03.001.
  • Lopez MJ, Mohiuddin SS (2020). Biochemistry, essential amino acids.
  • Zobiole LHS, Bonini EA, de Oliveira RS, Kremer RJ, Ferrarese-Filho O. Glyphosate affects lignin content and amino acid production in glyphosate-resistant soybean. Acta Physiol Plant. 2010;32(5):831–837. doi:10.1007/s11738-010-0467-0.
  • Carbonari CA, Gomes GLGC, Velini ED, Machado RF, Simões PS, de Castro Macedo G. Glyphosate effects on sugarcane metabolism and growth. Amer J Plant Sci. 2014;5(24):3585. doi:10.4236/ajps.2014.524374.
  • Casale J, Lydon J. Apparent effects of glyphosate on alkaloid production in coca plants grown in Colombia. J Forensic Sci. 2007;52(3):573–578. doi:10.1111/j.1556-4029.2007.00418.x.
  • Steinrücken HC, AMRHEIN N. 5-enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae. 2. Inhibition by glyphosate [N-(phosphononmethyl)glycine]. Eur J Biochem. 1984;143(2):351–357. doi:10.1111/j.1432-1033.1984.tb08379.x.
  • Leino L, Tall T, Helander M, Saloniemi I, Saikkonen K, Ruuskanen S, Puigbo P. Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. J Hazard Mater. 2021;408:124556. doi:10.1016/j.jhazmat.2020.124556.
  • Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Küpper A, Dayan FE. Mechanisms of evolved herbicide resistance. J Biol Chem. 2020;295(30):10307–10330. doi:10.1074/jbc.REV120.013572.
  • Gomes MP, Juneau P. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: is the mitochondrial electron transport chain a target of this herbicide? Environ Pollut. 2016;218:402–409. doi:10.1016/j.envpol.2016.07.019.
  • Staub JM, Brand L, Tran M, Kong Y, Rogers SG. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter. J Ind Microbiol Biotechnol. 2012;39(4):641–647. doi:10.1007/s10295-011-1057-x.
  • Puigbò P, Leino LI, Rainio MJ, Saikkonen K, Saloniemi I, Helander M. Does glyphosate affect the human microbiota? Life. 2022;12(5):707. doi:10.3390/life12050707.
  • Bote K, Pöppe J, Merle R, Makarova O, Roesler U. Minimum inhibitory concentration of glyphosate and of a glyphosate-containing herbicide formulation for Escherichia coli isolates–differences between pathogenic and non-pathogenic isolates and between host species. Front Microbiol. 2019;10:932. doi:10.3389/fmicb.2019.00932.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.
  • Rajilić–Stojanović M, Biagi E, Heilig HGHJ, Kajander K, Kekkonen RA, Tims S, de Vos WM. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1792–1801. doi:10.1053/j.gastro.2011.07.043.
  • Jacob GS, Garbow JR, Hallas LE, Kimack NM, Kishore GM, Schaefer J. Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl. Environ. Micro. 1988;54(12):2953–2958.
  • Mesnage R, Antoniou MN. Computational modelling provides insight into the effects of glyphosate on the shikimate pathway in the human gut microbiome. Curr Res Toxicol. 2020;1:25–33. doi:10.1016/j.crtox.2020.04.001.
  • Arbuckle TE, Lin Z, Mery LS. An exploratory analysis of the effect of pesticide exposure on the risk of spontaneous abortion in an Ontario farm population. Environ Health Perspect. 2001;109(8):851–857. doi:10.1289/ehp.01109851.
  • Caballero M, Amiri S, Denney JT, Monsivais P, Hystad P, Amram O. Estimated residential exposure to agricultural chemicals and premature mortality by parkinson’s disease in Washington state. Int J Env Res Pub He. 2018;15(12):2885. doi:10.3390/ijerph15122885.
  • de Roos AJ, Cooper GS, Alavanja MC, Sandler DP. Rheumatoid arthritis among women in the agricultural health study: risk associated with farming activities and exposures. Ann Epidemiol. 2005;15(10):762–770. doi:10.1016/j.annepidem.2005.08.001.
  • Cantor KP, Blair A, Everett G, Gibson R, Burmeister LF, Brown LM, Schuman L, Dick FR. Pesticides and other agricultural risk factors for non-hodgkin’s lymphoma among men in Iowa and minnesota. Cancer Res. 1992;52:2447–2455.
  • Eriksson M, Hardell L, Carlberg M, Åkerman M. Pesticide exposure as risk factor for non‐Hodgkin lymphoma including histopathological subgroup analysis. Int J Cancer. 2008;123(7):1657–1663. doi:10.1002/ijc.23589.
  • Hardell L, Eriksson M. A case–control study of non‐Hodgkin lymphoma and exposure to pesticides. Cancer. 1999;85(6):1353–1360. doi:10.1002/(SICI)1097-0142(19990315)85:6<1353:AID-CNCR19>3.0.CO;2-1.
  • McDuffie HH, Pahwa P, McLaughlin JR, Spinelli JJ, Fincham S, Dosman JA, Robson D, Skinnider LF, Choi NW. Non-hodgkin’s lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prev. 2001;10:1155–1163.
  • Hoppin JA, Umbach DM, London SJ, Henneberger PK, Kullman GJ, Alavanja MCR, Sandler DP. Pesticides and atopic and nonatopic asthma among farm women in the agricultural health study. Am J Respir Crit Care Med. 2008;177(1):11–18. doi:10.1164/rccm.200706-821OC.
  • von Ehrenstein OS, Ling C, Cui X, Cockburn M, Park AS, Yu F, Wu J, Ritz B. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: population based case-control study. Bmj. 2019;364:l962. doi:10.1136/bmj.l962.
  • Henneberger PK, Liang X, London SJ, Umbach DM, Sandler DP, Hoppin JA. Exacerbation of symptoms in agricultural pesticide applicators with asthma. Int Arch Occup Environ Health. 2014;87(4):423–432. doi:10.1007/s00420-013-0881-x.
  • Kamel F, Tanner CM, Umbach DM, Hoppin JA, Alavanja MC, Blair A, Comyns K, Goldman SM, Korell M, Langston JW. Pesticide Exposure and Self-reported Parkinson's Disease in the Agricultural Health Study. Am. J. Epidemiol. 2006;165(4):364–374. doi:10.1093/aje/kwk024.
  • Zoller O, Rhyn P, Zarn JA, Dudler V. Urine glyphosate level as a quantitative biomarker of oral exposure. Int J Hyg Envir Heal. 2020;228:113526. doi:10.1016/j.ijheh.2020.113526.
  • De Long NE, Holloway AC. Early-life chemical exposures and risk of metabolic syndrome. DMSO. 2017;Volume 10:101–109. doi:10.2147/DMSO.S95296.
  • Prasad M, Gatasheh MK, Alshuniaber MA, Krishnamoorthy R, Rajagopal P, Krishnamoorthy K, Periyasamy V, Veeraraghavan VP, Jayaraman S. Impact of glyphosate on the development of insulin resistance in experimental diabetic rats: role of NFκB signalling pathways. Antioxidants. 2022;11(12):2436. doi:10.3390/antiox11122436.
  • Beecham JE, Seneff S. Is there a link between autism and glyphosate-formulated herbicides. J Autism. 2016;3(1):1. doi:10.7243/2054-992X-3-1.
  • Aitbali Y, Ba-M’hamed S, Elhidar N, Nafis A, Soraa N, Bennis M. Glyphosate based-herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice. Neurotoxicol Teratol. 2018;67:44–49. doi:10.1016/j.ntt.2018.04.002.
  • D’Brant J. GMOs, gut flora, the shikimate pathway and cytochrome dysregulation. Nutr Perspect J Council On Nutr. 2014;37(1):5–12.
  • Hu J, Lesseur C, Miao Y, Manservisi F, Panzacchi S, Mandrioli D, Belpoggi F, Chen J, Petrick L. Low-dose exposure of glyphosate-based herbicides disrupt the urine metabolome and its interaction with gut microbiota. Sci Rep. 2021;11(1):1–10. doi:10.1038/s41598-021-82552-2.
  • Drašar P, Poc P, Stárka L. Glyphosate, an important endocrine disruptor. Diabetol Metab Endokrinol Vyziv. 2018;47:777–780.
  • Dai P, Hu P, Tang J, Li Y, Li C. Effect of glyphosate on reproductive organs in male rat. Acta Histochem. 2016;118(5):519–526. doi:10.1016/j.acthis.2016.05.009.
  • Gallegos CE, Baier CJ, Bartos M, Bras C, Domínguez S, Mónaco N, Gumilar F, Giménez MS, Minetti A. Perinatal glyphosate-based herbicide exposure in rats alters brain antioxidant status, glutamate and acetylcholine metabolism and affects recognition memory. Neurotox Res. 2018;34(3):363–374. doi:10.1007/s12640-018-9894-2.
  • Kreutz LC, Barcellos LJG, de Faria Valle S, de Oliveira Silva T, Anziliero D, dos Santos ED, Pivato M, Zanatta R. Altered hematological and immunological parameters in silver catfish (rhamdia quelen) following short term exposure to sublethal concentration of glyphosate. Fish Shellfish Immunol. 2011;30(1):51–57. doi:10.1016/j.fsi.2010.09.012.
  • Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294. doi:10.1038/s41467-018-05470-4.
  • Nikolaus S, Schulte B, Al-Massad N, Thieme F, Schulte DM, Bethge J, Rehman A, Tran F, Aden K, Häsler R. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology. 2017;153(6):1504–1516. doi:10.1053/j.gastro.2017.08.028.
  • Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, Chao C-C, Patel B, Yan R, Blain M. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586–597. doi:10.1038/nm.4106.
  • Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Ter Horst R, Jansen T, Jacobs L, Bonder MJ. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167(4):1125–1136. doi:10.1016/j.cell.2016.10.020.
  • Lee J-H, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015;23(11):707–718. doi:10.1016/j.tim.2015.08.001.
  • Roager HM, Hansen L, Bahl MI, Frandsen HL, Carvalho V, Gøbel RJ, Dalgaard MD, Plichta DR, Sparholt MH, Vestergaard H. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat microbiol. 2016;1(9):1–9. doi:10.1038/nmicrobiol.2016.93.
  • Gillezeau C, van Gerwen M, Shaffer RM, Rana I, Zhang L, Sheppard L, Taioli E. The evidence of human exposure to glyphosate: a review. Environ Health-Glob. 2019;18(1):1–14. doi:10.1186/s12940-018-0435-5.
  • Acquavella JF, Alexander BH, Mandel JS, Burns CJ, Gustin C. Exposure misclassification in studies of agricultural pesticides: insights from biomonitoring. Epidemiology. 2006;17(1):69–74. doi:10.1097/01.ede.0000190603.52867.22.
  • Trasande L, Aldana SI, Trachtman H, Kannan K, Morrison D, Christakis DA, Whitlock K, Messito MJ, Gross RS, Karthikraj R. Glyphosate exposures and kidney injury biomarkers in infants and young children. Environ Pollut. 2020;256:113334. doi:10.1016/j.envpol.2019.113334.
  • Ehling S, Reddy TM. Analysis of glyphosate and aminomethylphosphonic acid in nutritional ingredients and milk by derivatization with fluorenylmethyloxycarbonyl chloride and liquid chromatography–mass spectrometry. J Agr Food Chem. 2015;63(48):10562–10568. doi:10.1021/acs.jafc.5b04453.
  • Aris A, Leblanc S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Adv Exp Med Biol. 2011;31(4):528–533. doi:10.1016/j.reprotox.2011.02.004.
  • Dick RE, Quinn JP. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol. 1995;43(3):545–550. doi:10.1007/BF00218464.
  • Jacob GS, Garbow JR, Hallas LE, Kimack NM, Kishore GM, Schaefer J. Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microb. 1988;54(12):2953–2958. doi:10.1128/aem.54.12.2953-2958.1988.
  • Singh BK, Walker A. Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev. 2006;30(3):428–471. doi:10.1111/j.1574-6976.2006.00018.x.
  • Singh S, Kumar V, Gill JPK, Datta S, Singh S, Dhaka V, Kapoor D, Wani AB, Dhanjal DS, Kumar M. Herbicide glyphosate: toxicity and microbial degradation. Int J Env Res Pub He. 2020;17(20):7519. doi:10.3390/ijerph17207519.
  • Huch M, Stoll DA, Kulling SE, Soukup ST. Metabolism of glyphosate by the human fecal microbiota. Toxicol Lett. 2022;358:1–5. doi:10.1016/j.toxlet.2021.12.013.
  • Franke AA, Li X, Shvetsov YB, Lai JF. Pilot study on the urinary excretion of the glyphosate metabolite aminomethylphosphonic acid and breast cancer risk: the multiethnic cohort study. Environ Pollut. 2021;277:116848. doi:10.1016/j.envpol.2021.116848.
  • Jentzmik F, Stephan C, Miller K, Schrader M, Erbersdobler A, Kristiansen G, Lein M, Jung K. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur Urol. 2010;58(1):12–18. doi:10.1016/j.eururo.2010.01.035.
  • Jones AR. Some observations on the urinary excretion of glycine conjugates by laboratory animals. Xenobiotica. 1982;12(6):387–395. doi:10.3109/00498258209052480.
  • Lin ELC, Mattox JK, Daniel FB. Tissue distribution, excretion, and urinary metabolites of dichloroacetic acid in the male Fischer 344 rat. J Toxicol Environ Health, Part A Curr Issues. 1993;38(1):19–32. doi:10.1080/15287399309531697.
  • Blot N, Veillat L, Rouzé R, Delatte H, Rueppell O. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PloS One. 2019;14(4):e0215466. doi:10.1371/journal.pone.0215466.
  • Feng Y-L, Cao G, Chen D-Q, Vaziri ND, Chen L, Zhang J, Wang M, Guo Y, Zhao Y-Y. Microbiome–metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease. Cell Mol Life Sci. 2019;76(24):4961–4978. doi:10.1007/s00018-019-03155-9.
  • Norikura T, Sasaki Y, Kojima-Yuasa A, Kon A. Glyoxylic acid, an α-keto acid metabolite derived from glycine, promotes myogenesis in C2C12 cells. Nutrients. 2023;15(7):1763. doi:10.3390/nu15071763.
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–914. doi:10.1038/nature07762.
  • Mbage B, Li Y, Si H, Zhang X, Li Y, Wang X, Salah A, Zhang K. Fabrication of folate functionalized polyoxometalate nanoparticle to simultaneously detect H2O2 and sarcosine in colorimetry. Sens Actuators B Chem. 2020;304:127429. doi:10.1016/j.snb.2019.127429.
  • Lane H-Y, Liu Y-C, Huang C-L, Chang Y-C, Liau C-H, Perng C-H, Tsai GE. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry. 2008;63(1):9–12. doi:10.1016/j.biopsych.2007.04.038.
  • Nielsen LN, Roager HM, Casas ME, Frandsen HL, Gosewinkel U, Bester K, Licht TR, Hendriksen NB, Bahl MI. Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels. Environ Pollut. 2018;233:364–376. doi:10.1016/j.envpol.2017.10.016.
  • Yang X, Song Y, Zhang C, Pang Y, Song X, Wu M, Cheng Y. Effects of the glyphosate-based herbicide roundup on the survival, immune response, digestive activities and gut microbiota of the Chinese mitten crab, eriocheir sinensis. Aquat Toxicol. 2019;214:105243. doi:10.1016/j.aquatox.2019.105243.
  • Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and their health‐promoting effects. Bugs As Drugs: Ther Microbes Prev Treat Dis. 2018;79:7628–7638.
  • Saturio López S, Nogacka A, Alvarado-Jasso GM, Salazar N, González de Los Reyes-Gavilán C, Gueimonde Fernández M, Arboleya S. Role of bifidobacteria on infant health. Microorganisms. 2021;9(12):2415. doi:10.3390/microorganisms9122415.
  • Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and their molecular communication with the immune system. Front Microbiol. 2017;8:2345. doi:10.3389/fmicb.2017.02345.
  • Shehata AA, Schrödl W, Aldin AA, Hafez HM, Krüger M. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol. 2013;66(4):350–358. doi:10.1007/s00284-012-0277-2.
  • Rodrigues NR, de Souza APF. Occurrence of glyphosate and AMPA residues in soy-based infant formula sold in Brazil. Food Addit Contam. 2018;35(4):724–731. doi:10.1080/19440049.2017.1419286.
  • Walker M. Formula supplementation of breastfed infants: helpful or hazardous? ICAN: Infant, Child, Adolescent Nutr. 2015;7(4):198–207. doi:10.1177/1941406415591208.
  • Liu J-B, Chen K, Li Z-F, Wang Z-Y, Wang L. Glyphosate-induced gut microbiota dysbiosis facilitates male reproductive toxicity in rats. Sci Total Environ. 2022;805:150368. doi:10.1016/j.scitotenv.2021.150368.
  • Mesnage R, Panzacchi S, Bourne E, Mein CA, Perry MJ, Hu J, Chen J, Mandrioli D, Belpoggi F, Antoniou MN. Glyphosate and its formulations roundup bioflow and rangerpro alter bacterial and fungal community composition in the rat caecum microbiome. bioRxiv. 2021;13.
  • Del Castilo I, Neumann AS, Lemos FS, de Bastiani MA, Oliveira FL, Zimmer ER, Rêgo AM, Hardoim CCP, Antunes LCM, Lara FA. Lifelong exposure to a low-dose of the glyphosate-based herbicide RoundUp® causes intestinal damage, gut dysbiosis, and behavioral changes in mice. Int J Mol Sci. 2022;23(10):5583. doi:10.3390/ijms23105583.
  • Seshadri S, Shea T. Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and alzheimer’s disease? J Alzheimer’s Dis. 2006;9(4):393–398. doi:10.3233/JAD-2006-9404.
  • Barnett JA, Bandy ML, Gibson DL. Is the Use of Glyphosate in Modern Agriculture Resulting in Increased Neuropsychiatric Conditions Through Modulation of the Gut-brain-microbiome Axis? Front. Nutr. 2022;9. doi:10.3389/fnut.2022.827384.
  • Spencer CM, Alekseyenko O, Hamilton SM, Thomas AM, Serysheva E, Yuva‐Paylor LA, Paylor R. Modifying behavioral phenotypes in Fmr1KO mice: genetic background differences reveal autistic‐like responses. Autism Res. 2011;4(1):40–56. doi:10.1002/aur.168.
  • Kondoh T, Mallick HN, Torii K. Activation of the gut-brain axis by dietary glutamate and physiologic significance in energy homeostasis. Am J Clin Nutr. 2009;90(3):832S–837S. doi:10.3945/ajcn.2009.27462V.
  • Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol. 2005;75(3):207–246. doi:10.1016/j.pneurobio.2005.02.004.
  • Kandeel WA, Meguid NA, Bjørklund G, Eid EM, Farid M, Mohamed SK, Wakeel KE, Chirumbolo S, Elsaeid A, Hammad DY. Impact of Clostridium bacteria in children with autism spectrum disorder and their anthropometric measurements. J Mol Neurosci. 2020;70(6):897–907. doi:10.1007/s12031-020-01482-2.
  • Zuo Z, Fan H, Tang X, Chen Y, Xun L, Li Y, Song Z, Zhai H. Effect of different treatments and alcohol addiction on gut microbiota in minimal hepatic encephalopathy patients. Exp Ther Med. 2017;14(5):4887–4895. doi:10.3892/etm.2017.5141.
  • Owagboriaye F, Mesnage R, Dedeke G, Adegboyega T, Aladesida A, Adeleke M, Owa S, Antoniou MN. Impacts of a glyphosate-based herbicide on the gut microbiome of three earthworm species (alma millsoni, eudrilus eugeniae and libyodrilus violaceus): a pilot study. Toxicol Rep. 2021;8:753–758. doi:10.1016/j.toxrep.2021.03.021.
  • Castelli L, Balbuena S, Branchiccela B, Zunino P, Liberti J, Engel P, Antúnez K. Impact of chronic exposure to sublethal doses of glyphosate on honey bee immunity, gut microbiota and infection by pathogens. Microorganisms. 2021;9(4):845. doi:10.3390/microorganisms9040845.
  • Almasri H, Liberti J, Brunet J-L, Engel P, Belzunces LP. Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Sci Rep. 2022;12(1):1–15. doi:10.1038/s41598-022-08009-2.
  • Mesnage R, Teixeira M, Mandrioli D, Falcioni L, Ducarmon QR, Zwittink RD, Mazzacuva F, Caldwell A, Halket J, Amiel C. Use of shotgun metagenomics and metabolomics to evaluate the impact of glyphosate or Roundup MON 52276 on the gut microbiota and serum metabolome of Sprague-Dawley rats. Environ Health Perspect. 2021;129(1):017005. doi:10.1289/EHP6990.
  • Gardiner BJ, Tai AY, Kotsanas D, Francis MJ, Roberts SA, Ballard SA, Junckerstorff RK, Korman TM, Bourbeau P. Clinical and microbiological characteristics of eggerthella lenta bacteremia. J Clin Microbiol. 2015;53(2):626–635. doi:10.1128/JCM.02926-14.
  • Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature. 2019;568(7753):505–510. doi:10.1038/s41586-019-1058-x.
  • Mesnage R, Antoniou MN. Facts and fallacies in the debate on glyphosate toxicity. Front Public Health. 2017;5:316. doi:10.3389/fpubh.2017.00316.
  • Ackermann W, Coenen M, Schrödl W, Shehata AA, Krüger M. The influence of glyphosate on the microbiota and production of botulinum neurotoxin during ruminal fermentation. Curr Microbiol. 2015;70(3):374–382. doi:10.1007/s00284-014-0732-3.
  • Riede S, Toboldt A, Breves G, Metzner M, Köhler B, Bräunig J, Schafft H, Lahrssen‐Wiederholt M, Niemann L. Investigations on the possible impact of a glyphosate‐containing herbicide on ruminal metabolism and bacteria in vitro by means of the ‘rumen simulation technique. J Appl Microbiol. 2016;121(3):644–656. doi:10.1111/jam.13190.
  • Sørensen MT, Poulsen HD, Katholm CL, Højberg O. Feed residues of glyphosate–potential consequences for livestock health and productivity. Animal. 2021;15(1):100026. doi:10.1016/j.animal.2020.100026.
  • Billenkamp F, Schnabel K, Hüther L, Frahm J, von Soosten D, Meyer U, Höper D, Beer M, Seyboldt C, Neubauer H. No hints at glyphosate-induced ruminal dysbiosis in cows. npj Biofilm Microbio. 2021;7(1):1–13. doi:10.1038/s41522-021-00198-4.
  • Séralini G-E, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M, Hennequin D, de Vendômois JS. Republished study: long-term toxicity of a roundup herbicide and a roundup-tolerant genetically modified maize. Environ Sci Europe. 2014;26(1):1–17. doi:10.1186/s12302-014-0014-5.