894
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The role of Bifidobacterium genus in modulating the neonate microbiota: implications for antibiotic resistance acquisition in early life

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2357176 | Received 17 Dec 2023, Accepted 15 May 2024, Published online: 26 May 2024

References

  • Patangia DV, Ryan CA, Dempsey E, Stanton C, Ross RP. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis. Trends Microbiol. 2022;30(1):47–20. doi:10.1016/j.tim.2021.05.006.
  • Li X, Stokholm J, Brejnrod A, Vestergaard GA, Russel J, Trivedi U, Thorsen J, Gupta S, Hjelmsø MH, Shah SA. et al. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host Microbe [Internet]. 2021;29(6):975–987.e4. [accessed 2022 Feb 10]. http://www.cell.com/article/S1931312821001451/fulltext.
  • Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson DGJ, Rautava S, Isolauri E, Salminen S, Kumar HSatokari R. et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun [Internet]. 2018;9(1):3891. [accessed 2023 Mar 26]. doi:10.1038/s41467-018-06393-w.
  • Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, Chalklen L, Hall LJ. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. Isme J. 2019 [accessed 2023 Apr 3]. 14(2):635–648. https://www.nature.com/articles/s41396-019-0553-2.
  • Walsh C, Lane JA, van Sinderen D, Hickey RM. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J Funct Foods. 2020;72:104074. doi:10.1016/j.jff.2020.104074.
  • Taft DH, Liu J, Maldonado-Gomez MX, Akre S, Huda MN, Ahmad SM, Stephensen CB, Mills DA, Suen G. Bifidobacterial dominance of the gut in early life and acquisition of antimicrobial resistance. mSphere. 2018;3(5):10–128. [accessed 2022 Dec 20]. https:/pmc/articles/PMC6158511/.
  • Saturio S, Suárez M, Mancabelli L, Fernández N, Mantecón L, de Los Reyes-Gavilán CG, Ventura M, Gueimonde M, Arboleya S, Solís G. Effect of intrapartum antibiotics prophylaxis on the bifidobacterial establishment within the neonatal gut. Microorganisms. 2021;9(9):1867. [accessed 2023 Mar 26]. https:/pmc/articles/PMC8471514/.
  • van Schaik W. The human gut resistome. Phil Trans R Soc B. 2015;370(1670):20140087. [accessed 2024 Mar 28]. doi:10.1098/rstb.2014.0087.
  • Duranti S, Lugli GA, Mancabelli L, Turroni F, Milani C, Mangifesta M, Ferrario C, Anzalone R, Viappiani A, van Sinderen D. et al. Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl Environ Microbiol [Internet]. 2017;83(3):e02894–16. [accessed 2024 Mar 28]. https://pubmed.ncbi.nlm.nih.gov/27864179/.
  • Michaelis C, Grohmann E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics [Internet]. 2023;12(2):328. [accessed 2024 Mar 28]. https:/pmc/articles/PMC9952180/.
  • Ellabaan MMH, Munck C, Porse A, Imamovic L, Sommer MOA. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat Commun [Internet]. 2021;12(1):1–10. [accessed 2024 Mar 28]. https://www.nature.com/articles/s41467-021-22757-1.
  • Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea CA, Watkins C, Dempsey E, Mattivi F, Tuohy K. et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome [Internet]. 2017;5(1):1–18. [accessed 2022 Dec 20]. doi:10.1186/s40168-016-0213-y.
  • García-Mantrana I, Alcántara C, Selma-Royo M, Boix-Amorós A, Dzidic M, Gimeno-Alcañiz J, Úbeda-Sansano I, Sorribes-Monrabal I, Escuriet R, Gil-Raga F. et al. MAMI: A birth cohort focused on maternal-infant microbiota during early life. BMC Pediatr [Internet]. 2019;19(1):1–8. [accessed 2022 Dec 20]. doi:10.1186/s12887-019-1502-y.
  • Selma-Royo M, Calatayud Arroyo M, García-Mantrana I, Parra-Llorca A, Escuriet R, Martínez-Costa C, Collado MC. Perinatal environment shapes microbiota colonization and infant growth: impact on host response and intestinal function. Microbiome [Internet]. 2020;8(1):1–19. [accessed 2023 Jul 20]. doi:10.1186/s40168-020-00940-8.
  • Zhang K, Jin M, Yang D, Shen Z, Liu W, Yin J, Yang Z, Wang H, Shi D, Yang J. et al. Antibiotic resistance genes in gut of breast-fed neonates born by caesarean section originate from breast milk and hospital ward air. BMC Microbiol [Internet]. 2022 [accessed 2023 Mar 26]. 22(1):1–11. doi:10.1186/s12866-022-02447-8.
  • Carvalho MJ, Sands K, Thomson K, Portal E, Mathias J, Milton R, Gillespie D, Dyer C, Akpulu C, Boostrom I. et al. Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Nat Microbiol [Internet]. 2022;7(9):1337. [accessed 2023 Mar 26]. https:/pmc/articles/PMC9417982/.
  • Klassert TE, Zubiria-Barrera C, Kankel S, Stock M, Neubert R, Lorenzo-Diaz F, Doehring N, Driesch D, Fischer D, Slevogt H. Early bacterial colonization and antibiotic resistance gene acquisition in Newborns. Front Cell Infect Microbiol. 2020;10:332. doi:10.3389/fcimb.2020.00332.
  • Loo EXL, Zain A, Yap GC, Purbojati RW, Drautz-Moses DI, Koh YQ, Chong YS, Tan KH, Gluckman PD, Yap F. et al. Longitudinal assessment of antibiotic resistance gene profiles in gut microbiomes of infants at risk of eczema. BMC Infect Dis [Internet]. 2020;20(1):1–12. [accessed 2023 Mar 26]. doi:10.1186/s12879-020-05000-y.
  • Stedtfeld RD, Guo X, Stedtfeld TM, Sheng H, Williams MR, Hauschild K, Gunturu S, Tift L, Wang F, Howe A. et al. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiol Ecol [Internet]. 2018;94(9):fiy130. [accessed 2022 Dec 20]. https://academic.oup.com/femsec/article/94/9/fiy130/5057470.
  • Aronesty E. Comparison of sequencing utility programs. Open Bioinforma J. 2013;7(1):1–8. doi:10.2174/1875036201307010001.
  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics [Internet]. 2010;26(19):2460–2461. [accessed 2023 Feb 13]. https://pubmed.ncbi.nlm.nih.gov/20709691/.
  • Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016;081257. [accessed 2023 Feb 13]. doi:10.1101/081257v1.
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pẽa AG, Goodrich JK, Gordon JI. et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods [Internet]. 2010;7(5):335–336. [accessed 2023 Feb 13]. https://pubmed.ncbi.nlm.nih.gov/20383131/.
  • Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome [Internet]. 2018;6:1–17. [accessed 2023 Feb 13]. doi:10.1186/s40168-018-0470-z.
  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res [Internet]. 2014;42(D1):D633. [accessed 2023 Feb 13]. https:/pmc/articles/PMC3965039/.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol [Internet]. 2013;30(4):772–780. [accessed 2023 Feb 13]. https://pubmed.ncbi.nlm.nih.gov/23329690/.
  • Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One [Internet]. 2010;5(3):e9490. [accessed 2023 Feb 13]. https:/pmc/articles/PMC2835736/.
  • Gao X, Lin H, Revanna K, Dong Q. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy. BMC Bioinf [Internet]. 2017;18(1):1–10. [accessed 2023 June 29]. https://pubmed.ncbi.nlm.nih.gov/28486927/.
  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res [Internet]. 2007;35(21):7188–7196. [accessed 2023 June 29]. https://pubmed.ncbi.nlm.nih.gov/17947321/.
  • Wickham H. ggplot2. ggplot2; 2009.
  • Kassambara A, Mundt F. Extract and visualize the results of multivariate data analyses [R package factoextra version 1.0.7]; 2020.
  • Chen H, Boutros PC. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf [Internet]. 2011 [accessed 2023 Feb 7]. 12(1):1–7. doi:10.1186/1471-2105-12-35.
  • McMurdie PJ, Holmes S, Watson M. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE [Internet]. 2013 [accessed 2023 Feb 7]. 8(4):e61217. doi:10.1371/journal.pone.0061217.
  • Community Ecology Package [R package vegan version 2.6-4]. 2022 [accessed 2023 Feb 6]. https://CRAN.R-project.org/package=vegan.
  • Kassambara A. Pipe-friendly framework for basic statistical tests [R package rstatix version 0.6.0]. 2020.
  • Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, Tickle TL, Weingart G, Ren B, Schwager EH. et al. Multivariable association discovery in population-scale meta-omics studies. PLOS Comput Biol [Internet]. 2021 [accessed 2023 June 29]. 17(11):e1009442. doi:10.1371/journal.pcbi.1009442.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol) [Internet]. 1995;57(1):289–300. [accessed 2023 Feb 7]. doi:10.1111/j.2517-6161.1995.tb02031.x.
  • Fernandez-Julia PJ, Munoz-Munoz J, van Sinderen D. A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. Int J Biol Macromol. 2021;181:877–889. doi:10.1016/j.ijbiomac.2021.04.069.
  • Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the cell surface architecture of bacteroides and Bifidobacterium in the gut colonization. Front Microbiol. 2021;12:754819.
  • Rios-Covian D, Cuesta I, Alvarez-Buylla JR, Ruas-Madiedo P, Gueimonde M, De Los Reyes-Gavilán CG. Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria. BMC Microbiol [Internet]. 2016;16(1):1–8. [accessed 2023 Jul 11]. doi:10.1186/s12866-016-0773-9.
  • Rios-Covian D, Arboleya S, Hernandez-Barranco AM, Alvarez-Buylla JR, Ruas-Madiedo P, Gueimonde M, De Los Reyes-Gavilan CG. Interactions between Bifidobacterium and bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by Bifidobacteria. Appl Environ Microbiol [Internet]. 2013;79:7518. [accessed 2023 Jul 11]. https:/pmc/articles/PMC3837738/.
  • Lim HJ, Shin HS. Antimicrobial and immunomodulatory effects of Bifidobacterium strains: a review. J Microbiol Biotechnol [Internet]. 2020;30(12):1793. [accessed 2024 Mar 28]. https:/pmc/articles/PMC9728261/.
  • Choi YJ, Shin HS. Antibacterial effect of eight probiotic strains of Bifidobacterium against pathogenic staphylococcus aureus and Pseudomonas aeruginosa. J Bacteriol Virol [Internet]. 2021;51(3):128–137. [accessed 2024 Mar 28]. https:/journal-jbv.apub.kr/articles/xml/z4AG/.
  • Horrocks V, King OG, Yip AYG, Marques IM, McDonald JAK. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization. Microbiology (N Y) [Internet]. 2023;169(8):1377. [accessed 2024 Mar 28]. https:/pmc/articles/PMC10482380/.
  • Abdelhamid AG, Esaam A, Hazaa MM. Cell free preparations of probiotics exerted antibacterial and antibiofilm activities against multidrug resistant E. coli. Saudi Pharm J [Internet]. 2018;26(5):603–607. [accessed 2024 Mar 28]. https://pubmed.ncbi.nlm.nih.gov/29991904/.
  • Tomé AR, Carvalho FM, Teixeira-Santos R, Burmølle M, Mergulhão FJM, Gomes LC. Use of probiotics to control biofilm formation in food industries. Antibiotics [Internet]. 2023;12(4):754. [accessed 2024 Mar 28]. https:/pmc/articles/PMC10135146/.
  • Javvadi SG, Kujawska M, Papp D, Gontarczyk AM, Jordan A, Lawson MAE, O’Neill IJ, Alcon-Giner C, Kiu R, Clarke P. et al. A novel bacteriocin produced by Bifidobacterium longum subsp. infantis has dual antimicrobial and immunomodulatory activity. bioRxiv. 2022;2022–01. [accessed 2024 Mar 28]. doi:10.1101/2022.01.27.477972v2.
  • Touré R, Kheadr E, Lacroix C, Moroni O, Fliss I. Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes. J Appl Microbiol [Internet]. 2003;95:1058–1069. [accessed 2024 Mar 28]. doi:10.1046/j.1365-2672.2003.02085.x.
  • Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. Microbiome Res Rep [Internet]. 2023;2(4). [accessed 2024 Mar 28]. https:/pmc/articles/PMC10688832/.
  • O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol [Internet]. 2016;7:925. [accessed 2024 Mar 28]. https:/pmc/articles/PMC4908950/.
  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP. et al. Human gut microbiome viewed across age and geography. Nature [Internet]. 2012;486(7402):222. [accessed 2023 Apr 3]. https:/pmc/articles/PMC3376388/.
  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, Van Den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics [Internet]. 2006;118(2):511–521. [accessed 2023 Apr 3]. https:/pediatrics/article/118/2/511/68933/Factors-Influencing-the-Composition-of-the.
  • Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, Endres BT, Shi Z, Garey KW, Hyser JM. et al. Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways. MBio [Internet]. 2019;10(3):10–128. [accessed 2023 June 29]. https:/pmc/articles/PMC6581858/.
  • Ghoddusi HB, Tamime AY. MICROFLORA of the INTESTINE | Biology of Bifidobacteria. Encycl Food Microbiol: Second Ed. 2014;2:639–645.
  • Moya-Gonzálvez EM, Rubio-Del-Campo A, Rodríguez-Díaz J, Yebra MJ. Infant-gut associated Bifidobacterium dentium strains utilize the galactose moiety and release lacto-N-triose from the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose. Sci Rep [Internet]. 2021;11(1):23328. [accessed 2023 June 29]. https:/pmc/articles/PMC8639736/.
  • Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H, Xiao JZ, Kitaoka M, Katayama T. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with Bifidobacteria-Rich Microbiota formation. Nutr. 2020 2019;12(1):71. [accessed 2023 June 29]. https://www.mdpi.com/2072-6643/12/1/71/htm.
  • Engevik MA, Danhof HA, Hall A, Engevik KA, Horvath TD, Haidacher SJ, Hoch KM, Endres BT, Bajaj M, Garey KW. et al. The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiol [Internet]. 2021;21(1):154. [accessed 2023 June 29]. https:/pmc/articles/PMC8145834/.
  • Haddad EN, Comstock SS. Archive for research in child health (ARCH) and baby gut: Study protocol for a remote, prospective, longitudinal pregnancy and birth cohort to address microbiota development and child health. Methods Protoc [Internet]. 2021;4(3):52. [accessed 2022 Feb 10]. https:/pmc/articles/PMC8395764/.
  • Karami N, Nowrouzian F, Adlerberth I, Wold AE. Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrob Agents Chemother. 2006;50(1):156–161. [accessed 2022 Feb 10]. https://pubmed.ncbi.nlm.nih.gov/16377681/.
  • Severgnini M, Camboni T, Ceccarani C, Morselli S, Cantiani A, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C. et al. Distribution of ermb, ermf, tet(W), and tet(m) resistance genes in the vaginal ecosystem of women during pregnancy and puerperium. Pathogens [Internet]. 2021;10(12):1546. [accessed 2022 May 14]. https:/pmc/articles/PMC8705968/.
  • Merenstein D, Fraser CM, Roberts RF, Liu T, Grant-Beurmann S, Tan TP, Smith KH, Cronin T, Martin OA, Sanders ME. et al. Bifidobacterium animalis subsp. lactis BB-12 protects against antibiotic-induced functional and compositional changes in human fecal microbiome. Nutr. 2021;13(8):2814. [accessed 2023 Feb 13]. https://pubmed.ncbi.nlm.nih.gov/34444974/.
  • Pathak P, Trilligan C, Rapose A. Case Report: Bifidobacterium—friend or foe? A case of urinary tract infection with Bifidobacterium species. BMJ Case Rep [Internet]. 2014;2014(sep24 1):bcr2014205122–bcr2014205122. [accessed 2023 Feb 13]. https:/pmc/articles/PMC4173150/.
  • Casaburi G, Duar RM, Vance DP, Mitchell R, Contreras L, Frese SA, Smilowitz JT, Underwood MA. Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria. Antimicrob Resist Infect Control [Internet]. 2019;8(1):1–8. [accessed 2022 Dec 20]. https://pubmed.ncbi.nlm.nih.gov/31423298/.
  • Khan I, Yasir M, Farman M, Kumosani T, Albasri SF, Bajouh OS, Azhar EI. Evaluation of gut bacterial community composition and antimicrobial resistome in pregnant and non-pregnant women from Saudi population. Infect Drug Resist [Internet]. 2019;12:1749. [accessed 2022 Feb 10]. https:/pmc/articles/PMC6593780/.
  • Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe [Internet]. 2015;17(5):690–703. [accessed 2023 Jul 11]. http://www.cell.com/article/S1931312815001626/fulltext.
  • Nøhr-Meldgaard K, Struve C, Ingmer H, Agersø Y. The tetracycline resistance gene, tet(W) in Bifidobacterium animalis subsp. lactis follows phylogeny and differs from tet(W) in other species. Front Microbiol. 2021;12:1623. doi:10.3389/fmicb.2021.658943.
  • Cao L, Chen H, Wang Q, Li B, Hu Y, Zhao C, Hu Y, Yin Y. Literature-based phenotype survey and in silico genotype investigation of antibiotic resistance in the genus Bifidobacterium. Curr Microbiol. 2020;77(12):4104–4113. doi:10.1007/s00284-020-02230-w.
  • Fouhy F, Ogilvie LA, Jones BV, Ross RP, Ryan AC, Dempsey EM, Fitzgerald GF, Stanton C, Cotter PD, Abdo Z. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library. PLoS One [Internet]. 2014;9(9):e108016. [accessed 2022 May 14]. https://pubmed.ncbi.nlm.nih.gov/25247417/.
  • Gurnee EA, Ndao IM, Johnson JR, Johnston BD, Gonzalez MD, Burnham CAD, Hall-Moore CM, McGhee JE, Mellmann A, Warner BB. et al. Gut colonization of healthy children and their mothers with pathogenic ciprofloxacin-resistant Escherichia coli. J Infect Dis [Internet]. 2015;212(12):1862–1868. [accessed 2022 Oct 18]. https://pubmed.ncbi.nlm.nih.gov/25969564/.
  • Selma-Royo M, Calatayud Arroyo M, García-Mantrana I, Parra-Llorca A, Escuriet R, Martínez-Costa C, Collado MC. Perinatal environment shapes microbiota colonization and infant growth: impact on host response and intestinal function. Microbiome [Internet]. 2020;8(1):1–9. [accessed 2023 Apr 3]. https://pubmed.ncbi.nlm.nih.gov/33228771/.
  • Pan K, Zhang C, Tian J. The effects of different modes of delivery on the structure and predicted function of intestinal microbiota in neonates and early infants. Pol J Microbiol [Internet]. 2021;70:45. [accessed 2023 Mar 26]. https:/pmc/articles/PMC8008759/.
  • Selma-Royo M, Calatayud Arroyo M, García-Mantrana I, Parra-Llorca A, Escuriet R, Martínez-Costa C, Collado MC. Perinatal environment shapes microbiota colonization and infant growth: impact on host response and intestinal function. Microbiome [Internet]. 2020;8(1):1–9. [accessed 2023 June 28]. https:/pmc/articles/PMC7685601/.
  • Gibson MK, Crofts TS, Dantas G. Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol [Internet]. 2015;27:51. [accessed 2023 Mar 26]. https:/pmc/articles/PMC4659777/.
  • Mazzola G, Murphy K, Ross RP, Di Gioia D, Biavati B, Corvaglia LT, Faldella G, Stanton C, Wilson BA. Early gut microbiota perturbations following intrapartum antibiotic prophylaxis to prevent group B streptococcal disease. PLOS One [Internet]. 2016:11(6):e0157527. [accessed 2023 Mar 26]. https://pubmed.ncbi.nlm.nih.gov/27332552/.
  • ACOG Guidance: Antibiotic Prophylaxis during Labor and Delivery - The ObG Project [Internet]. [accessed 2023 June 28]. https://www.obgproject.com/2018/08/29/acog-guidance-antibiotic-prophylaxis-during-labor-and-delivery/.
  • Reyman M, van Houten MA, Watson RL, Chu MLJN, Arp K, de Waal WJ, Schiering I, Plötz FB, Willems RJL, van Schaik W. et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun [Internet]. 2022;13(1):1–12. [accessed 2023 Mar 26]. https://www.nature.com/articles/s41467-022-28525-z.
  • Nadimpalli ML, Bourke CD, Robertson RC, Delarocque-Astagneau E, Manges AR, Pickering AJ. Can breastfeeding protect against antimicrobial resistance? BMC Med [Internet]. 2020;18(1):1–11. [accessed 2022 Feb 14]. doi:10.1186/s12916-020-01862-w.
  • World Health Organization. Exclusive breastfeeding for six months best for babies everywhere [Internet]. Exclusive breastfeeding for six months best for babies everywhere. 2011 [accessed 2022 Oct 24]. https://www.who.int/news/item/15-01-2011-exclusive-breastfeeding-for-six-months-best-for-babies-everywhere.
  • Liu Y, Qin S, Song Y, Feng Y, Lv N, Xue Y, Liu F, Wang S, Zhu B, Ma J. et al. The perturbation of infant gut microbiota caused by cesarean delivery is partially restored by exclusive breastfeeding. Front Microbiol [Internet]. 2019;10:427987. [accessed 2022 Oct 5]. https://pubmed.ncbi.nlm.nih.gov/30972048/.
  • Samarra A, Esteban-Torres M, Cabrera-Rubio R, Bernabeu M, Arboleya S, Gueimonde M, Collado MC. Maternal-infant antibiotic resistance genes transference: what do we know? Gut Microbes [Internet]. 2023;15:2194797. [accessed 2023 June 28]. https://pubmed.ncbi.nlm.nih.gov/37020319/.
  • Das L, Virmani R, Sharma V, Rawat D, Singh Y. Human milk microbiota: transferring the antibiotic resistome to infants. Indian J Microbiol [Internet]. 2019;59:410–416. [accessed 2022 Jan 20]. https://pubmed.ncbi.nlm.nih.gov/31762502/.