800
Views
5
CrossRef citations to date
0
Altmetric
Commentary

A role for novel lipid interactions in the dynamic recruitment of SNX27 to the T-cell immune synapse

, , &
Pages 215-220 | Received 16 Mar 2015, Accepted 16 Mar 2015, Published online: 21 May 2015

References

  • Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan NJ, von Zastrow M. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 2011 13, 715-721; PMID:21602791; http://dx.doi.org/10.1038/ncb2252.
  • Wang X, Zhao Y, Zhang X, Badie H, Zhou Y, Mu Y, Loo LS, Cai L, Thompson RC, Yang B, et al. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down syndrome. Nat Med 2013 19, 473-480; PMID:23524343; http://dx.doi.org/10.1038/nm.3117.
  • Nakagawa T, Asahi M. beta1-adrenergic receptor recycles via a membranous organelle, recycling endosome, by binding with sorting nexin27. J Membr Biol 2013 246, 571-579; PMID:23780416; http://dx.doi.org/10.1007/s00232-013-9571-6.
  • Rincon E, Sáez de Guinoa J, Gharbi SI, Sorzano CO, Carrasco YR, Mérida I. Translocation dynamics of sorting nexin 27 in activated T cells. J Cell Sci 2011 124, 776-788; PMID:21303929; http://dx.doi.org/10.1242/jcs.072447.
  • Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavaré JM, Cullen PJ. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol 2013 15, 461-471; PMID:23563491; http://dx.doi.org/10.1038/ncb2721.
  • Ghai R, Collins B. M. PX-FERM proteins: A link between endosomal trafficking and signaling? Small GTPases 2011 2, 259-263; PMID:22292128; http://dx.doi.org/10.4161/sgtp.2.5.17276.
  • Steinberg F, Heesom KJ, Bass MD, Cullen PJ. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J Cell Biol 2012 197, 219-230; PMID:22492727; http://dx.doi.org/10.1083/jcb.201111121.
  • Tseng HY, Thorausch N, Ziegler T, Meves A, Fässler R, Böttcher RT. Sorting nexin 31 binds multiple β integrin cytoplasmic domains and regulates beta1 integrin surface levels and stability. J Mol Biol 2014 426, 3180-3194; PMID:25020227; http://dx.doi.org/10.1016/j.jmb.2014.07.003.
  • Ghai, R., et al., Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins. Proc Natl Acad Sci U S A, 2013. 110(8): p. E643-52.
  • Bottcher RT, Stremmel C, Meves A, Meyer H, Widmaier M, Tseng HY, Fässler R. Sorting nexin 17 prevents lysosomal degradation of beta1 integrins by binding to the beta1-integrin tail. Nat Cell Biol 2012 14, 584-592; PMID:22561348; http://dx.doi.org/10.1038/ncb2501.
  • Gallon M, Clairfeuille T, Steinberg F, Mas C, Ghai R, Sessions RB, Teasdale RD, Collins BM, Cullen PJ. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Proc Natl Acad Sci U S A 2014 111, E3604-3613; PMID:25136126; http://dx.doi.org/10.1073/pnas.1410552111.
  • Balla T. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 2005 118, 2093-2104; PMID:15890985; http://dx.doi.org/10.1242/jcs.02387.
  • Ghai R, Tello-Lafoz M, Norwood SJ, Yang Z, Clairfeuille T, Teasdale RD, Mérida I, Collins BM. Phosphoinositide binding by the SNX27 FERM domain regulates localisation at the immune synapse of activated T-cells. J Cell Sci 2015; 128:553-565; http://dx.doi.org/10.1242/jcs.158204.
  • Hayashi H, Naoi S, Nakagawa T, Nishikawa T, Fukuda H, Imajoh-Ohmi S, Kondo A, Kubo K, Yabuki T, Hattori A, et al. Sorting nexin 27 interacts with multidrug resistance-associated protein 4 (MRP4) and mediates internalization of MRP4. J Biol Chem 2012 287, 15054-15065; PMID:22411990; http://dx.doi.org/10.1074/jbc.M111.337931.
  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse: a molecular machine controlling T cell activation. Science 1999 285, 221-227; PMID:10398592; http://dx.doi.org/10.1126/science.285.5425.221.
  • Dustin ML, Colman DR. Neural and immunological synaptic relations. Science 2002 298, 785-789; PMID:12399580; http://dx.doi.org/10.1126/science.1076386.
  • Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells after synapse formation. Nature 2001 411, 489-494; PMID:11373683; http://dx.doi.org/10.1038/35078099.
  • Davis DM, Chiu I, Fassett M, Cohen GB, Mandelboim O, Strominger JL. The human natural killer cell immune synapse. Proc Natl Acad Sci U S A 1999 96, 15062-15067; PMID:10611338; http://dx.doi.org/10.1073/pnas.96.26.15062.
  • Kupfer A, Singer SJ. The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose. J Exp Med 1989 170, 1697-1713; PMID:2530300; http://dx.doi.org/10.1084/jem.170.5.1697.
  • Angus KL, Griffiths GM. Cell polarisation and the immunological synapse. Curr Opin Cell Biol 2013 25, 85-91; PMID:22990072; http://dx.doi.org/10.1016/j.ceb.2012.08.013.
  • Das V, Nal B, Dujeancourt A, Thoulouze MI, Galli T, Roux P, Dautry-Varsat A, Alcover A. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 2004 20, 577-588; PMID:15142526; http://dx.doi.org/10.1016/S1074-7613(04)00106-2.
  • Alcover A, Thoulouze MI. Vesicle traffic to the immunological synapse: a multifunctional process targeted by lymphotropic viruses. Curr Top Microbiol Immunol 2010 340, 191-207; PMID:19960315; http://dx.doi.org/10.1007/978-3-642-03858-7_10.
  • Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristán C, Victora GD, Zanin-Zhorov A, Dustin ML. Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 2010 28, 79-105; PMID:19968559; http://dx.doi.org/10.1146/annurev-immunol-030409-101308.
  • Quann EJ, Merino E, Furuta T, Huse M. Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol 2009 10, 627-635; PMID:19430478; http://dx.doi.org/10.1038/ni.1734.
  • Martin-Cofreces NB, Baixauli F, Sanchez-Madrid F. Immune synapse: conductor of orchestrated organelle movement. Trends Cell Biol 2014 24, 61-72; PMID:24119664; http://dx.doi.org/10.1016/j.tcb.2013.09.005.
  • Murphy DA, Courtneidge SA. The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2011 12, 413-426; PMID:21697900; http://dx.doi.org/10.1038/nrm3141.
  • Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, Tyska MJ, Weaver AM. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 2013 5, 1159-1168; PMID:24290760; http://dx.doi.org/10.1016/j.celrep.2013.10.050.
  • Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A, Sánchez-Madrid F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011 2, 282; PMID:21505438; http://dx.doi.org/10.1038/ncomms1285.
  • Wernimont SA, Cortesio CL, Simonson WT, Huttenlocher A. Adhesions ring: a structural comparison between podosomes and the immune synapse. Eur J Cell Biol 2008 87, 507-515; PMID:18343530; http://dx.doi.org/10.1016/j.ejcb.2008.01.011.
  • Griffiths GM, Tsun A, Stinchcombe JC. The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol 2010 189, 399-406; PMID:20439993; http://dx.doi.org/10.1083/jcb.201002027.
  • Costello PS, Gallagher M, Cantrell DA. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nat Immunol 2002 3, 1082-1089; PMID:12389042; http://dx.doi.org/10.1038/ni848.
  • Le Floc'h A, Tanaka Y, Bantilan NS, Voisinne G, Altan-Bonnet G, Fukui Y, Huse M. Annular PtdIns(3,4,5)P3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse. J Exp Med 2013 210, 2721-2737; PMID:24190432; http://dx.doi.org/10.1084/jem.20131324.
  • Bonello G, Blanchard N, Montoya MC, Aguado E, Langlet C, He HT, Nunez-Cruz S, Malissen M, Sanchez-Madrid F, Olive D, et al. Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J Cell Sci 2004 117, 1009-1016; PMID:14996932; http://dx.doi.org/10.1242/jcs.00968.
  • Sheng R, Chen Y, Yung Gee H, Stec E, Melowic HR, Blatner NR, Tun MP, Kim Y, Källberg M, Fujiwara TK, et al. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat Commun 2012 3, 1249; PMID:23212378; http://dx.doi.org/10.1038/ncomms2221.
  • Capuano C, Paolini R, Molfetta R, Frati L, Santoni A, Galandrini R. PtdIns(4,5)P2-dependent regulation of Munc13-4 endocytic recycling: impact on the cytolytic secretory pathway. Blood 2012 119, 2252-2262; PMID:22271450; http://dx.doi.org/10.1182/blood-2010-12-324160.
  • Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J Cell Biol 2003 162, 113-124; PMID:12847086; http://dx.doi.org/10.1083/jcb.200301006.
  • Koch M, Holt M. Coupling exo- and endocytosis: an essential role for PIP(2) at the synapse. Biochim Biophys Acta 2012 1821, 1114-1132; PMID:22387937; http://dx.doi.org/10.1016/j.bbalip.2012.02.008.
  • Wang X., Huang T, Zhao Y, Zheng Q, Thompson RC, Bu G, Zhang YW, Hong W, Xu H. Sorting Nexin 27 Regulates Abeta Production through Modulating gamma-Secretase Activity. Cell Rep 2014 9, 1023-1033; PMID:25437557; http://dx.doi.org/10.1016/j.celrep.2014.09.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.