1,012
Views
5
CrossRef citations to date
0
Altmetric
Commentary

Gene expression homeostasis and chromosome architecture

Pages 1-5 | Received 31 Mar 2015, Accepted 07 Apr 2015, Published online: 19 Jun 2015

References

  • Dorman CJ. H-NS, the genome sentinel. Nat Rev Microbiol 2007; 5:157-61; PMID:17191074; http://dx.doi.org/10.1038/nrmicro1598
  • Dillon SC, Dorman CJ. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 2010; 8:185-95; PMID:20140026; http://dx.doi.org/10.1038/nrmicro2261
  • Rocha EPC. The replication-related organization of bacterial genomes. Microbiology 2004; 150:1609-27; PMID:15184548; http://dx.doi.org/10.1099/mic.0.26974-0
  • Srinivasan R, Scolari VF, Lagomarsino MC, Seshasayee ASN. The genome-scale interplay amongst xenogene silencing, stress response and chromosome architecture in Escherichia coli. Nucleic Acids Res 2015; 43:295-308; PMID:25429971; http://dx.doi.org/10.1093/nar/gku1229
  • Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 2008; 36:6688-719; PMID:18948295; http://dx.doi.org/10.1093/nar/gkn668
  • Vernikos GS, Parkhill J. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 2006; 22:2196-203; PMID:16837528; http://dx.doi.org/10.1093/bioinformatics/btl369
  • Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK. Cryptic prophages help bacteria cope with adverse environments. Nat Commun 2010; 1:147; PMID:21266997; http://dx.doi.org/10.1038/ncomms1146
  • Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JCD. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2006; 2:e81; PMID:16933988; http://dx.doi.org/10.1371/journal.ppat.0020081
  • Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 2006; 313:236-8; PMID:16763111; http://dx.doi.org/10.1126/science.1128794
  • Oshima T, Ishikawa S, Kurokawa K, Aiba H, Ogasawara N. Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res 2006; 13:141-53; PMID:17046956
  • Kahramanoglou C, Seshasayee ASN, Prieto AI, Ibberson D, Schmidt S, Zimmermann J, Benes V, Fraser GM, Luscombe NM. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 2011; 39:2073-91; PMID:21097887; http://dx.doi.org/10.1093/nar/gkq934
  • Fang FC, Rimsky S. New insights into transcriptional regulation by H-NS. Curr Opin Microbiol 2008; 11:113-20; PMID:18387844; http://dx.doi.org/10.1016/j.mib.2008.02.011
  • Gordon BRG, Li Y, Cote A, Weirauch MT, Ding P, Hughes TR, Navarre WW, Xia B, Liu J. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc Natl Acad Sci U S A 2011; 108:10690-5; PMID:21673140; http://dx.doi.org/10.1073/pnas.1102544108
  • Dame RT, Wyman C, Goosen N. Structural basis for preferential binding of H-NS to curved DNA. Biochimie 2001; 83:231-4; PMID:11278073; http://dx.doi.org/10.1016/S0300-9084(00)01213-X
  • Sharadamma N, Harshavardhana Y, Singh P, Muniyappa K. Mycobacterium tuberculosis nucleoid-associated DNA-binding protein H-NS binds with high-affinity to the Holliday junction and inhibits strand exchange promoted by RecA protein. Nucleic Acids Res 2010; 38:3555-69; PMID:20176569; http://dx.doi.org/10.1093/nar/gkq064
  • Stoebel DM, Free A, Dorman CJ. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology 2008; 154:2533-45; PMID:18757787; http://dx.doi.org/10.1099/mic.0.2008/020693-0
  • Sonden B, Uhlin BE. Coordinated and differential expression of histone-like proteins in Escherichia coli: regulation and function of the H-NS analog StpA. EMBO J 1996; 15:4970-80; PMID:8890170
  • Shimada T, Bridier A, Briandet R, Ishihama A. Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS. Mol Microbiol 2011; 82:378-97; PMID:21883529; http://dx.doi.org/10.1111/j.1365-2958.2011.07818.x
  • Cardinale CJ, Washburn RS, Tadigotla VR, Brown LM, Gottesman ME, Nudler E. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 2008; 320:935-8; PMID:18487194; http://dx.doi.org/10.1126/science.1152763
  • Saxena S, Gowrishankar J. Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins. J Bacteriol 2011; 193:3832-41; PMID:21602341; http://dx.doi.org/10.1128/JB.00220-11
  • Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife 2015; 4; PMID:25594903; http://dx.doi.org/10.7554/eLife.04970
  • Chandraprakash D, Seshasayee ASN. Inhibition of factor-dependent transcription termination in Escherichia coli might relieve xenogene silencing by abrogating H-NS-DNA interactions in vivo. J Biosci 2014; 39:53-61; PMID:24499790; http://dx.doi.org/10.1007/s12038-014-9413-4
  • Dillon SC, Cameron ADS, Hokamp K, Lucchini S, Hinton JCD, Dorman CJ. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol Microbiol 2010; 76:1250-65; PMID:20444106; http://dx.doi.org/10.1111/j.1365-2958.2010.07173.x
  • Uyar E, Kurokawa K, Yoshimura M, Ishikawa S, Ogasawara N, Oshima T. Differential binding profiles of StpA in wild-type and h-ns mutant cells: a comparative analysis of cooperative partners by chromatin immunoprecipitation-microarray analysis. J Bacteriol 2009; 191:2388-91; PMID:19151137; http://dx.doi.org/10.1128/JB.01594-08
  • Srinivasan R, Chandraprakash D, Krishnamurthi R, Singh P, Scolari VF, Krishna S, Seshasayee ASN. Genomic analysis reveals epistatic silencing of “expensive” genes in Escherichia coli K-12. Mol Biosyst 2013; 9:2021-33; PMID:23661089; http://dx.doi.org/10.1039/c3mb70035f
  • Zwir I, Yeo W-S, Shin D, Latifi T, Huang H, Groisman EA. Bacterial nucleoid-associated protein uncouples transcription levels from transcription timing. MBio 2014; 5:e01485-14; PMID:25293763; http://dx.doi.org/10.1128/mBio.01485-14
  • Singh SS, Singh N, Bonocora RP, Fitzgerald DM, Wade JT, Grainger DC. Widespread suppression of intragenic transcription initiation by H-NS. Genes Dev 2014; 28:214-9; PMID:24449106; http://dx.doi.org/10.1101/gad.234336.113
  • Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 2012; 26:2621-33; PMID:23207917; http://dx.doi.org/10.1101/gad.196741.112
  • Johansson J, Balsalobre C, Wang SY, Urbonaviciene J, Jin DJ, Sondén B, Uhlin BE. Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP-CRP and the (p)ppGpp regulons in Escherichia coli. Cell 2000; 102:475-85; PMID:10966109; http://dx.doi.org/10.1016/S0092-8674(00)00052-0
  • Zarei M, Sclavi B, Cosentino Lagomarsino M. Gene silencing and large-scale domain structure of the E. coli genome. Mol Biosyst 2013; 9:758-67; PMID:23412141; http://dx.doi.org/10.1039/c3mb25364c
  • Wang W, Li G-W, Chen C, Xie XS, Zhuang X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 2011; 333:1445-9; PMID:21903814; http://dx.doi.org/10.1126/science.1204697
  • Spurio R, Dürrenberger M, Falconi M, La Teana A, Pon CL, Gualerzi CO. Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol Gen Genet 1992; 231:201-11; PMID:1310520; http://dx.doi.org/10.1007/BF00279792
  • Scolari VF, Bassetti B, Sclavi B, Lagomarsino MC. Gene clusters reflecting macrodomain structure respond to nucleoid perturbations. Mol Biosyst 2011; 7:878-88; PMID:21165487; http://dx.doi.org/10.1039/C0MB00213E
  • Barth M, Marschall C, Muffler A, Fischer D, Hengge-Aronis R. Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli. J Bacteriol 1995; 177:3455-64; PMID:7768855
  • Ali SS, Soo J, Rao C, Leung AS, Ngai DH-M, Ensminger AW, Navarre WW. Silencing by H-NS potentiated the evolution of Salmonella. PLoS Pathog 2014; 10:e1004500; PMID:25375226; http://dx.doi.org/10.1371/journal.ppat.1004500
  • Valens M, Penaud S, Rossignol M, Cornet F, Boccard F. Macrodomain organization of the Escherichia coli chromosome. EMBO J 2004; 23:4330-41; PMID:15470498; http://dx.doi.org/10.1038/sj.emboj.7600434
  • Scolari VF, Cosentino Lagomarsino M. Combined collapse by bridging and self-adhesion in a prototypical polymer model inspired by the bacterial nucleoid. Soft Matter 2015; 11:1677-87; PMID:25532064; http://dx.doi.org/10.1039/C4SM02434F
  • Marbouty M, Cournac A, Flot J-F, Marie-Nelly H, Mozziconacci J, Koszul R. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. Elife 2014; 3:e03318; PMID:25517076; http://dx.doi.org/10.7554/eLife.03318
  • Cagliero C, Grand RS, Jones MB, Jin DJ, O'Sullivan JM. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res 2013:1-14; PMID:23143271
  • Xie T, Fu L-Y, Yang Q-Y, Xiong H, Xu H, Ma B-G, Zhang H-Y. Spatial features for Escherichia coli genome organization. BMC Genomics 2015; 16:37; PMID:25652224; http://dx.doi.org/10.1186/s12864-015-1258-1
  • Ferenci T. What is driving the acquisition of mutS and rpoS polymorphisms in Escherichia coli? Trends Microbiol 2003; 11:457-61; PMID:14557028; http://dx.doi.org/10.1016/j.tim.2003.08.003
  • Straus DS. Selection for a large genetic duplication in Salmonella typhimurium. Genetics 1975; 80:227-37; PMID:1093939
  • Sobetzko P, Travers A, Muskhelishvili G. Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci USA. 2012 Jan 10;109(2):E42-50. doi: 10.1073/pnas.1108229109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.