1,759
Views
6
CrossRef citations to date
0
Altmetric
Extra View

The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation

, , &
Pages 15-18 | Received 06 Oct 2014, Accepted 18 Nov 2014, Published online: 04 Mar 2015

References

  • Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen C, Schmitt AD, Espinoza CA, Ren B. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 2013; 503: 290-4; PMID:24141950
  • Heidari N, Phanstiel DH, He C, Grubert F, Jahanbanian F, Kasowski M, Zhang MQ, Snyder MP. Genome-wide map of regulatory interactions in the human genome. Genome Res 2014; PMID:25228660
  • Magnani L, Eeckhoute J, Lupien M. Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet 2011; 27: 465-74; PMID:21885149; http://dx.doi.org/10.1016/j.tig.2011.07.002
  • Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 2011; 25: 2227-41; PMID:22056668; http://dx.doi.org/10.1101/gad.176826.111
  • Siersbæk R, Rabiee A, Nielsen R, Sidoli S, Traynor S, Loft A, La Cour Poulsen L, Rogowska-Wrzesinska A, Jensen ON, Mandrup S. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep 2014; 7: 1443-55; PMID:24857652; http://dx.doi.org/10.1016/j.celrep.2014.04.042
  • Madsen MS, Siersbæk R, Boergesen M, Nielsen R, Mandrup S. Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol 2014; 34: 939-54; PMID:24379442; http://dx.doi.org/10.1128/MCB.01344-13
  • Voss TC, Schiltz RL, Sung M, Yen PM, Stamatoyannopoulos JA, Biddie SC, Johnson TA, Miranda TB, John S, Hager GL. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 2011; 146: 544-54; PMID:21835447; http://dx.doi.org/10.1016/j.cell.2011.07.006
  • Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED. Comparative epigenomic analysis of murine and human adipogenesis. Cell 2010; 143: 156-69; PMID:20887899; http://dx.doi.org/10.1016/j.cell.2010.09.006
  • Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJJ, Lazar MA. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev 2010; 24: 1035-44; PMID:20478996; http://dx.doi.org/10.1101/gad.1907110
  • Siersbæk R, Nielsen R, John S, Sung M, Baek S, Loft A, Hager GL, Mandrup S. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J 2011; 30: 1459-72; PMID:21427703; http://dx.doi.org/10.1038/emboj.2011.65
  • Sérandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh C, Barloy-Hubler F, Brown M, Lupien M, Métivier R, et al. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res 2011; 21: 555-65; PMID:21233399; http://dx.doi.org/10.1101/gr.111534.110
  • Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011; 480: 490-5; PMID:22170606
  • Oger F, Dubois-Chevalier J, Gheeraert C, Avner S, Durand E, Froguel P, Salbert G, Staels B, Lefebvre P, Eeckhoute J. Peroxisome proliferator-activated receptor γ (PPARγ) regulates genes involved in insulin/IGF signalling and lipid metabolism during adipogenesis through functionally distinct enhancer classes. J Biol Chem 2014; 289: 708-722; PMID:24288131; http://dx.doi.org/10.1074/jbc.M113.526996
  • Sérandour AA, Avner S, Oger F, Bizot M, Percevault F, Lucchetti-Miganeh C, Palierne G, Gheeraert C, Barloy-Hubler F, Péron CL, et al. Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Res 2012; 40: 8255-65; PMID:22730288; http://dx.doi.org/10.1093/nar/gks595
  • Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 2013; 14: 341-56; PMID:23698584; http://dx.doi.org/10.1038/nrm3589
  • Hon GC, Song C, Du T, Jin F, Selvaraj S, Lee AY, Yen C, Ye Z, Mao S, Wang B, et al. 5mC Oxidation by Tet2 Modulates Enhancer Activity and Timing of Transcriptome Reprogramming during Differentiation. Mol Cell 2014; 56: 286-97; PMID:25263596; http://dx.doi.org/10.1016/j.molcel.2014.08.026
  • Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrel A, Balasubramanian S. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 2014; PMID:25411882; http://dx.doi.org/10.1038/nchem.2064
  • Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PWTC, Bauer C, Münzel M, Wagner M, Müller M, Khan F, et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013; 152: 1146-59; PMID:23434322; http://dx.doi.org/10.1016/j.cell.2013.02.004
  • Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 2014; 28:2103-19; PMID:25223896; http://dx.doi.org/10.1101/gad.248005.114
  • Fujiki K, Shinoda A, Kano F, Sato R, Shirahige K, Murata M. PPARγ-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat Commun 2013; 4: 2262; PMID:23912449; http://dx.doi.org/10.1038/ncomms3262
  • Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 2009; 10: 252-63; PMID:19274049; http://dx.doi.org/10.1038/nrg2538
  • Dubois-Chevalier J, Oger F, Dehondt H, Firmin FF, Gheeraert C, Staels B, Lefebvre P, Eeckhoute J. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Res. 2014; 42: 10943-59; PMID:25183525; http://dx.doi.org/10.1093/nar/gku780
  • Zlatanova J, Caiafa P. CTCF and its protein partners: divide and rule?. J. Cell. Sci. 2009; 122: 1275-84; PMID:19386894; http://dx.doi.org/10.1242/jcs.039990
  • Fu Y, Sinha M, Peterson CL, Weng Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 2008; 4: e1000138; PMID:18654629; http://dx.doi.org/10.1371/journal.pgen.1000138
  • Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, et al. A map of the cis-regulatory sequences in the mouse genome. Nature 2012; 488: 116-20; PMID:22763441; http://dx.doi.org/10.1038/nature11243
  • Lee B, Bhinge AA, Battenhouse A, McDaniell RM, Liu Z, Song L, Ni Y, Birney E, Lieb JD, Furey TS, et al. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res. 2012; 22: 9-24; PMID:22090374; http://dx.doi.org/10.1101/gr.127597.111
  • Calero-Nieto FJ, Ng FS, Wilson NK, Hannah R, Moignard V, Leal-Cervantes AI, Jimenez-Madrid I, Diamanti E, Wernisch L, Göttgens B. Key regulators control distinct transcriptional programmes in blood progenitor and mast cells. EMBO J. 2014; 33: 1212-26; PMID:24760698
  • Sheffield NC, Thurman RE, Song L, Safi A, Stamatoyannopoulos JA, Lenhard B, Crawford GE, Furey TS. Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Genome Res. 2013; 23: 777-88; PMID:23482648; http://dx.doi.org/10.1101/gr.152140.112
  • Herold M, Bartkuhn M, Renkawitz R. CTCF: insights into insulator function during development. Development 2012; 139: 1045-57; PMID:22354838; http://dx.doi.org/10.1242/dev.065268
  • Wang H, Maurano MT, Qu H, Varley KE, Gertz J, Pauli F, Lee K, Canfield T, Weaver M, Sandstrom R, et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 2012; 22: 1680-8; PMID:22955980; http://dx.doi.org/10.1101/gr.136101.111
  • Essien K, Vigneau S, Apreleva S, Singh LN, Bartolomei MS, Hannenhalli S. CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic and transcriptomic features. Genome Biol. 2009; 10: R131; PMID:19922652
  • Oldfield AJ, Yang P, Conway AE, Cinghu S, Freudenberg JM, Yellaboina S, Jothi R. Histone-Fold Domain Protein NF-Y Promotes Chromatin Accessibility for Cell Type-Specific Master Transcription Factors. Mol Cell 2014; 55: 708-22; PMID:25132174; http://dx.doi.org/10.1016/j.molcel.2014.07.005
  • Nakahashi H, Kwon KK, Resch W, Vian L, Dose M, Stavreva D, Hakim O, Pruett N, Nelson S, Yamane A, et al. A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep 2013; 3: 1678-89; PMID:23707059; http://dx.doi.org/10.1016/j.celrep.2013.04.024
  • Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves A, Kutter C, Brown GD, Marshall A, Flicek P, Odom DT. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 2012; 148: 335-48; PMID:22244452; http://dx.doi.org/10.1016/j.cell.2011.11.058
  • Weth O, Renkawitz R. CTCF function is modulated by neighboring DNA binding factors. Biochem. Cell Biol. 2011; 89: 459-68; PMID:21895576; http://dx.doi.org/10.1139/o11-033
  • Davidson EH. The uncommon roles of common gene regulatory factors in the genomes of differentiating cells. EMBO J 2014; 33: 1193-4; PMID:24788410; http://dx.doi.org/10.1002/embj.201488693
  • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576-89
  • Métivier R, Penot G, Hübner MR, Reid G, Brand H, Kos M, Gannon F. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003; 115: 751-63; PMID:14675539; http://dx.doi.org/10.1016/S0092-8674(03)00934-6
  • Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour AA, Avner S, Henry C, Percevault F, Belaud-Rotureau M, et al. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol 2014; 34: 2418-36; PMID:24752895; http://dx.doi.org/10.1128/MCB.00918-13
  • Weth O, Paprotka C, Günther K, Schulte A, Baierl M, Leers J, Galjart N, Renkawitz R. CTCF induces histone variant incorporation, erases the H3K27me3 histone mark and opens chromatin. Nucleic Acids Res 2014; 42: 11941-51; PMID:25294833; http://dx.doi.org/10.1093/nar/gku937
  • Magbanua JP, Runneburger E, Russell S, White R. A variably occupied CTCF binding site in the Ultrabithorax gene in the Drosophila Bithorax Complex. Mol Cell Biol 2014; PMID:25368383
  • Feldmann A, Ivanek R, Murr R, Gaidatzis D, Burger L, Schübeler D. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet. 2013; 9: e1003994; PMID:24367273
  • Teif VB, Beshnova DA, Vainshtein Y, Marth C, Mallm J, Höfer T, Rippe K. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res. 2014; 24: 1285-95; PMID:24812327; http://dx.doi.org/10.1101/gr.164418.113
  • Odom DT, Dowell RD, Jacobsen ES, Nekludova L, Rolfe PA, Danford TW, Gifford DK, Fraenkel E, Bell GI, Young RA. Core transcriptional regulatory circuitry in human hepatocytes. Mol. Syst. Biol. 2006; 2: 2006.0017; PMID:16738562; http://dx.doi.org/10.1038/msb4100059
  • Eeckhoute J, Oger F, Staels B, Lefebvre P. Coordinated regulation of PPARγ expression and activity through control of chromatin structure in adipogenesis and obesity. PPAR Res 2012; 2012: 164140; PMID:22991504; http://dx.doi.org/10.1155/2012/164140
  • Siersbæk R, Nielsen R, Mandrup S. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol. Metab. 2011; 23: 56-64; PMID:22079269; http://dx.doi.org/10.1016/j.tem.2011.10.001
  • Delgado-Olguín P, Brand-Arzamendi K, Scott IC, Jungblut B, Stainier DY, Bruneau BG, Recillas-Targa F. CTCF promotes muscle differentiation by modulating the activity of myogenic regulatory factors. J. Biol. Chem. 2011; 286: 12483-94; PMID:21288905; http://dx.doi.org/10.1074/jbc.M110.164574
  • Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA. Circuitry and dynamics of human transcription factor regulatory networks. Cell 2012; 150: 1274-86; PMID:22959076; http://dx.doi.org/10.1016/j.cell.2012.04.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.