3,274
Views
20
CrossRef citations to date
0
Altmetric
EXTRA VIEW

Nucleosome dynamics during chromatin remodeling in vivo

&
Pages 20-26 | Received 03 Jan 2016, Accepted 29 Jan 2016, Published online: 02 Mar 2016

References

  • Thomas JO, Kornberg RD. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A 1975; 72:2626-30; PMID:241077; http://dx.doi.org/10.1073/pnas.72.7.2626
  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 1991; 88:10148-52; PMID:1946434; http://dx.doi.org/10.1073/pnas.88.22.10148
  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389:251-60; PMID:9305837; http://dx.doi.org/10.1038/38444
  • van Holde KE, Lohr DE, Robert C. What happens to nucleosomes during transcription? J Biolog Chem 1992; 267:2837-40; PMID:1310672
  • Weintraub H, Worcel A, Alberts B. A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell 1976; 9:409-17; PMID:991271; http://dx.doi.org/10.1016/0092-8674(76)90085-4
  • Lee MS, Garrard WT. Transcription-induced nucleosome ‘splitting’: an underlying structure for DNase I sensitive chromatin. EMBO J 1991; 10:607-15; PMID:2001676
  • Tatchell K, Van Holde KE. Nucleosome reconstitution: effect of DNA length on nuclesome structure. Biochemistry 1979; 18:2871-80; PMID:476061; http://dx.doi.org/10.1021/bi00580a031
  • Furuyama T, Codomo CA, Henikoff S. Reconstitution of hemisomes on budding yeast centromeric DNA. Nucleic Acids Res 2013; 41:5769-83; PMID:23620291; http://dx.doi.org/10.1093/nar/gkt314
  • Annunziato AT. Split decision: what happens to nucleosomes during DNA replication? J Biol Chem 2005; 280:12065-8; PMID:15664979; http://dx.doi.org/10.1074/jbc.R400039200
  • Xu M, Long C, Chen X, Huang C, Chen S, Zhu B. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 2010; 328:94-8; PMID:20360108; http://dx.doi.org/10.1126/science.1178994
  • Huang C, Zhang Z, Xu M, Li Y, Li Z, Ma Y, Cai T, Zhu B. H3.3-H4 tetramer splitting events feature cell-type specific enhancers. PLoS Genetics 2013; 9:e1003558; PMID:23754967; http://dx.doi.org/10.1371/journal.pgen.1003558
  • Katan-Khaykovich Y, Struhl K. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc Natl Acad Sci U S A 2011; 108:1296-301; PMID:21220302; http://dx.doi.org/10.1073/pnas.1018308108
  • Krassovsky K, Henikoff JG, Henikoff S. Tripartite organization of centromeric chromatin in budding yeast. Proc Natl Acad Sci U S A 2012; 109:243-8; PMID:22184235; http://dx.doi.org/10.1073/pnas.1118898109
  • Furuyama S, Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci U S A 2007; 104:14706-11; PMID:17804787; http://dx.doi.org/10.1073/pnas.0706985104
  • Furuyama T, Henikoff S. Centromeric nucleosomes induce positive DNA supercoils. Cell 2009; 138:104-13; PMID:19596238; http://dx.doi.org/10.1016/j.cell.2009.04.049
  • Henikoff S, Ramachandran S, Krassovsky K, Bryson TD, Codomo CA, Brogaard K, Widom J, Wang JP, Henikoff JG. The budding yeast Centromere DNA Element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife 2014; 3:e01861; PMID:24737863; http://dx.doi.org/10.7554/eLife.01861
  • Brogaard K, Xi L, Wang JP, Widom J. A map of nucleosome positions in yeast at base-pair resolution. Nature 2012; 486:496-501; PMID:22722846
  • Ramachandran S, Zentner GE, Henikoff S. Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Res 2015; 25:381-90; PMID:25491770; http://dx.doi.org/10.1101/gr.182618.114
  • Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 2007; 129:1153-64; PMID:17574026; http://dx.doi.org/10.1016/j.cell.2007.04.026
  • Rhee HS, Bataille AR, Zhang L, Pugh BF. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 2014; 159:1377-88; PMID:25480300; http://dx.doi.org/10.1016/j.cell.2014.10.054
  • Leschziner AE, Saha A, Wittmeyer J, Zhang Y, Bustamante C, Cairns BR, Nogales E. Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method. Proc Natl Acad Sci U S A 2007; 104:4913-8; PMID:17360331; http://dx.doi.org/10.1073/pnas.0700706104
  • Chaban Y, Ezeokonkwo C, Chung WH, Zhang F, Kornberg RD, Maier-Davis B, Lorch Y, Asturias FJ. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat Struct Mol Biol 2008; 15:1272-7; PMID:19029894; http://dx.doi.org/10.1038/nsmb.1524
  • Saha A, Wittmeyer J, Cairns BR. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol 2005; 12:747-55; PMID:16086025; http://dx.doi.org/10.1038/nsmb973
  • Lorch Y, Maier-Davis B, Kornberg RD. Mechanism of chromatin remodeling. Proc Natl Acad Sci U S A 2010; 107:3458-62; PMID:20142505; http://dx.doi.org/10.1073/pnas.1000398107
  • Hsu JM, Huang J, Meluh PB, Laurent BC. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol Cell Biol 2003; 23:3202-15; PMID:12697820; http://dx.doi.org/10.1128/MCB.23.9.3202-3215.2003
  • Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN, Herskowitz I. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 1995; 9:2770-9; PMID:7590252; http://dx.doi.org/10.1101/gad.9.22.2770
  • Muthurajan UM, Bao Y, Forsberg LJ, Edayathumangalam RS, Dyer PN, White CL, Luger K. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J 2004; 23:260-71; PMID:14739929; http://dx.doi.org/10.1038/sj.emboj.7600046
  • Flaus A, Rencurel C, Ferreira H, Wiechens N, Owen-Hughes T. Sin mutations alter inherent nucleosome mobility. EMBO J 2004; 23:343-53; PMID:14726954; http://dx.doi.org/10.1038/sj.emboj.7600047
  • Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv 2015; 1:e1500447; PMID:26601204; http://dx.doi.org/10.1126/sciadv.1500447
  • Henikoff JG, Belsky JA, Krassovsky K, MacAlpine DM, Henikoff S. Epigenome characterization at single base-pair resolution. Proc Natl Acad Sci U S A 2011; 108:18318-23; PMID:22025700; http://dx.doi.org/10.1073/pnas.1110731108