1,796
Views
21
CrossRef citations to date
0
Altmetric
Commentary

Shared mechanisms in physiological and pathological nucleoplasmic reticulum formation

&
Pages 34-45 | Received 31 Aug 2016, Accepted 19 Oct 2016, Published online: 06 Jan 2017

References

  • Prunuske AJ, Ullman KS. The nuclear envelope: form and reformation. Curr Opin Cell Biol 2006; 18:108-16; PMID:16364623; http://dx.doi.org/10.1016/j.ceb.2005.12.004
  • Kamei H. Relationship of nuclear invaginations to perinuclear rings composed of intermediate filaments in MIA PaCa-2 and some other cells. Cell Structure Function 1994; 19:123-32; PMID:7954871; http://dx.doi.org/10.1247/csf.19.123
  • Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: form and function. Trends Cell Biol 2011; 21:362-73; PMID:21514163; http://dx.doi.org/10.1016/j.tcb.2011.03.008
  • Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 2003; 5:440-6; PMID:12717445; http://dx.doi.org/10.1038/ncb980
  • Fricker M, Hollinshead M, White N, Vaux D. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol 1997; 136:531-44; PMID:9024685; http://dx.doi.org/10.1083/jcb.136.3.531
  • Langevin HM, Storch KN, Snapp RR, Bouffard NA, Badger GJ, Howe AK, Taatjes DJ. Tissue stretch induces nuclear remodeling in connective tissue fibroblasts. Histochem Cell Biol 2010; 133:405-15; PMID:20237796; http://dx.doi.org/10.1007/s00418-010-0680-3
  • Storch K, Taatjes D, Bouffard N, Locknar S, Bishop N, Langevin H. Alpha smooth muscle actin distribution in cytoplasm and nuclear invaginations of connective tissue fibroblasts. Histochem Cell Biol 2007; 127:523-30; PMID:17310383; http://dx.doi.org/10.1007/s00418-007-0275-9
  • Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 2008; 320:1332-6; PMID:18535242; http://dx.doi.org/10.1126/science.1156947
  • True LD, Jordan CD. The cancer nuclear microenvironment: interface between light microscopic cytology and molecular phenotype. J Cell Biochem 2008; 104:1994-2003; PMID:18041766; http://dx.doi.org/10.1002/jcb.21478
  • Bussolati G, Marchi∫ C, Gaetano L, Lupo R, Sapino A. Pleomorphism of the nuclear envelope in breast cancer: a new approach to an old problem. J Cell Mol Med 2008; 12:209-18; PMID:18053086; http://dx.doi.org/10.1111/j.1582-4934.2007.00176.x
  • Malhas A, Vaux D. Nuclear envelope invaginations and cancer. In: Schirmer EC, de las Heras JI, eds. Cancer Biology and the Nuclear Envelope: Springer New York, 2014:523-35
  • Frost B, Bardai FH, Feany MB. Lamin dysfunction mediates neurodegeneration in tauopathies. Curr Biol 2016; 26:129-36; PMID:26725200; http://dx.doi.org/10.1016/j.cub.2015.11.039
  • Rodríguez R, Hernández-Hernández O, Magaña JJ, González-Ramírez R, García-López ES, Cisneros B. Altered nuclear structure in myotonic dystrophy type 1-derived fibroblasts. Mol Biol Reports 2015; 42:479-88; http://dx.doi.org/10.1007/s11033-014-3791-4
  • McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, Djabali K. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One 2007; 2:e1269; PMID:18060063; http://dx.doi.org/10.1371/journal.pone.0001269
  • Brandes D, Schofield BH, Anton E. Nuclear Mitochondria? Science 1965; 149:1373-4; PMID:5889956; http://dx.doi.org/10.1126/science.149.3690.1373
  • Clubb BH, Locke M. 3T3 cells have nuclear invaginations containing F-actin. Tissue Cell 1998; 30:684-91; PMID:10189322; http://dx.doi.org/10.1016/S0040-8166(98)80087-6
  • Goulbourne CN, Malhas AN, Vaux DJ. The induction of a nucleoplasmic reticulum by prelamin A accumulation requires CTP:phosphocholine cytidylyltransferase-α. J Cell Sci 2011; 124:4253-66; PMID:22223883; http://dx.doi.org/10.1242/jcs.091009
  • Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell 1995; 80:439-44; PMID:7859285; http://dx.doi.org/10.1016/0092-8674(95)90494-8
  • Nicotera P, McConkey DJ, Jones DP, Orrenius S. ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci U S A 1989; 86:453-7; PMID:2911591; http://dx.doi.org/10.1073/pnas.86.2.453
  • Maraldi NM, Cocco L, Capitani S, Mazzotti G, Barnabei O, Manzoli FA. Lipid-dependent nuclear signalling: morphological and functional features. Adv Enzyme Regulation 1994; 34:129-43; PMID:7942270; http://dx.doi.org/10.1016/0065-2571(94)90013-2
  • Divecha N, Banfić H, Irvine RF. Inositides and the nucleus and inositides in the nucleus. Cell 1993; 74:405-7; PMID:8394217; http://dx.doi.org/10.1016/0092-8674(93)80041-C
  • Manzoli L, Martelli AM, Billi AM, Faenza I, Fiume R, Cocco L. Nuclear phospholipase C: involvement in signal transduction. Progress Lipid Res 2005; 44:185-206; PMID:15896848; http://dx.doi.org/10.1016/j.plipres.2005.04.003
  • Irvine RF. Nuclear inositide signalling-expansion, structures and clarification. Biochim Et Biophys Acta - Mol Cell Biol Lipids 2006; 1761:505-8; ; http://dx.doi.org/10.1016/j.bbalip.2006.02.008
  • Marius P, Guerra MT, Nathanson MH, Ehrlich BE, Leite MF. Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium 2006; 39:65-73; PMID:16289270; http://dx.doi.org/10.1016/j.ceca.2005.09.010
  • Oliveira AG, Guimarães ES, Andrade LM, Menezes GB, Leite MF. Decoding calcium signaling across the nucleus. Physiol 2014; 29:361-8; PMID:25180265; http://dx.doi.org/10.1152/physiol.00056.2013
  • Zhang SJ, Zou M, Lu L, Lau D, Ditzel DAW, Delucinge-Vivier C, Aso Y, Descombes P, Bading H. Nuclear calcium signaling controls expression of a large gene pool: Identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genetics 2009; 5:e1000604
  • Nalaskowski MM, Fliegert R, Ernst O, Brehm MA, Fanick W, Windhorst S, Lin H, Giehler S, Hein J, Yuan-Na Lin, et al. Human inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) is a nucleocytoplasmic shuttling protein specifically enriched at cortical actin filaments and at invaginations of the nuclear envelope. J Biol Chem 2011; 286:4500-10; PMID:21148483; http://dx.doi.org/10.1074/jbc.M110.173062
  • Dewaste V, Moreau C, De Smedt F, Bex F, De Smedt H, Wuytack F, Missiaen L, Erneux C. The three isoenzymes of human inositol-1,4,5-trisphosphate 3-kinase show specific intracellular localization but comparable Ca2+ responses on transfection in COS-7 cells. Biochem J 2003; 374:41-9; PMID:12747803; http://dx.doi.org/10.1042/bj20021963
  • Yu JCH, Lloyd-Burton SM, Irvine RF, Schell MJ. Regulation of the localization and activity of inositol 1,4,5-trisphosphate 3-kinase B in intact cells by proteolysis. Biochem J 2005; 392:435-41; PMID:16173920; http://dx.doi.org/10.1042/BJ20050829
  • Collado-Hilly M, Shirvani H, Jaillard D, Mauger J-P. Differential redistribution of Ca2+-handling proteins during polarisation of MDCK cells: Effects on Ca2+ signalling. Cell Calcium 2010; 48:215-24; PMID:20932574; http://dx.doi.org/10.1016/j.ceca.2010.09.003
  • Pauly N, Knight MR, Thuleau P, Van Der Luit AH, Moreau M, Trewavas AJ, Ranjeva R, Mazars C. Control of free calcium in plant cell nuclei. Nature 2000; 405:754-5; PMID:10866186; http://dx.doi.org/10.1038/35015671
  • Collings DA, Carter CN, Rink JC, Scott AC, Wyatt SE, Allen NS. Plant nuclei can contain extensive grooves and invaginations. Plant Cell 2000; 12:2425-39; PMID:11148288; http://dx.doi.org/10.1105/tpc.12.12.2425
  • McNamara LE, Burchmore R, Riehle MO, Herzyk P, Biggs MJP, Wilkinson CDW, Curtis AS, Dalby MJ. The role of microtopography in cellular mechanotransduction. Biomaterials 2012; 33:2835-47; PMID:22248989; http://dx.doi.org/10.1016/j.biomaterials.2011.11.047
  • Bourgeois CA, Hemon D, Bouteille M. Structural relationship between the nucleolus and the nuclear envelope. J Ultrastructure Res 1979; 68:328-40; PMID:490761; http://dx.doi.org/10.1016/S0022-5320(79)90165-5
  • Legartová S, Stixová L, Laur O, Kozubek S, Sehnalová P, Bártová E. Nuclear structures surrounding internal lamin invaginations. J Cell Biochem 2014; 115:476-87; http://dx.doi.org/10.1002/jcb.24681
  • Galiová G, Bártová E, Raška I, Krejčí J, Kozubek S. Chromatin changes induced by lamin A/C deficiency and the histone deacetylase inhibitor trichostatin A. Eur J Cell Biol 2008; 87:291-303; http://dx.doi.org/10.1016/j.ejcb.2008.01.013
  • Cesarini E, Mozzetta C, Marullo F, Gregoretti F, Gargiulo A, Columbaro M, Cortesi A, Antonelli L, Di Pelino S, Squarzoni S, et al. Lamin A/C sustains PcG protein architecture, maintaining transcriptional repression at target genes. J Cell Biol 2015; 211:533-51; PMID:26553927; http://dx.doi.org/10.1083/jcb.201504035
  • Marullo F, Cesarini E, Antonelli L, Gregoretti F, Oliva G, Lanzuolo C. Nucleoplasmic Lamin A/C and Polycomb group of proteins: An evolutionarily conserved interplay. Nucleus 2016; 7:103-11; PMID:26930442; http://dx.doi.org/10.1080/19491034.2016.1157675
  • Finlan LE. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genetics 2008; 4:e1000039; PMID:18369458; http://dx.doi.org/10.1371/journal.pgen.1000039
  • Kumaran RI, Spector DL. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol 2008; 180:51-65; PMID:18195101; http://dx.doi.org/10.1083/jcb.200706060
  • Reddy KL, Zullo JM, Bertolino E, Singh H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 2008; 452:243-7; PMID:18272965; http://dx.doi.org/10.1038/nature06727
  • Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 2014; 15:7-18; PMID:24326623; http://dx.doi.org/10.1038/nrm3719
  • Ohsaki Y, Kawai T, Yoshikawa Y, Cheng J, Jokitalo E, Fujimoto T. PML isoform II plays a critical role in nuclear lipid droplet formation. J Cell Biol 2016; 212:29-38; PMID:26728854; http://dx.doi.org/10.1083/jcb.201507122
  • Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Fröhlich F, et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 2013; 24:384-99; PMID:23415954; http://dx.doi.org/10.1016/j.devcel.2013.01.013
  • Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Progress Lipid Res 2015; 59:147-71; PMID:26165797; http://dx.doi.org/10.1016/j.plipres.2015.07.001
  • Lagace TA, Ridgway ND. The rate-limiting enzyme in phosphatidylcholine synthesis regulates proliferation of the nucleoplasmic reticulum. Mol Biol Cell 2005; 16:1120-30; PMID:15635091; http://dx.doi.org/10.1091/mbc.E04-10-0874
  • Gupton SL, Collings DA, Allen NS. Endoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division. Plant Physiol Biochem 2006; 44:95-105; PMID:16647266; http://dx.doi.org/10.1016/j.plaphy.2006.03.003
  • Broers JLV, Ramaekers FCS, Bonne G, Ben Yaou R, Hutchison CJ. Nuclear lamins: Laminopathies and their role in premature ageing. Physiological Rev 2006; 86:967-1008; PMID:16816143; http://dx.doi.org/10.1152/physrev.00047.2005
  • Funkhouser CM, Sknepnek R, Shimi T, Goldman AE, Goldman RD, Olvera de la Cruz M. Mechanical model of blebbing in nuclear lamin meshworks. Proc Natl Acad Sci U S A 2013; 110:3248-53; PMID:23401537; http://dx.doi.org/10.1073/pnas.1300215110
  • Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL, Young SG, Lee RT. Lamins A and C but not Lamin B1 regulate nuclear mechanics. J Biol Chem 2006; 281:25768-80; PMID:16825190; http://dx.doi.org/10.1074/jbc.M513511200
  • Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 1997; 94:849-54; PMID:9023345; http://dx.doi.org/10.1073/pnas.94.3.849
  • Mazumder A, Roopa T, Kumar A, Iyer KV, Ramdas NM, Shivashankar GV. Chapter 10 - Prestressed Nuclear Organization in Living Cells. In: Shivashankar GV, ed. Methods in Cell Biology: Academic Press, 2010:221-39
  • Mammoto T, Ingber DE. Mechanical control of tissue and organ development. Development 2010; 137:1407-20; PMID:20388652; http://dx.doi.org/10.1242/dev.024166
  • Rowat AC, Lammerding J, Herrmann H, Aebi U. Towards an integrated understanding of the structure and mechanics of the cell nucleus. BioEssays 2008; 30:226-36; PMID:18293361; http://dx.doi.org/10.1002/bies.20720
  • Helfrich P, Jakobsson E. Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. Biophys J 1990; 57:1075-84; PMID:1692748; http://dx.doi.org/10.1016/S0006-3495(90)82625-4
  • Jarsch IK, Daste F, Gallop JL. Membrane curvature in cell biology: An integration of molecular mechanisms. J Cell Biol 2016; 214:375-87; PMID:27528656; http://dx.doi.org/10.1083/jcb.201604003
  • McMahon HT, Boucrot E. Membrane curvature at a glance. J Cell Sci 2015; 128:1065-70; PMID:25774051; http://dx.doi.org/10.1242/jcs.114454
  • Pombo A, Dillon N. Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 2015; 16:245-57; PMID:25757416; http://dx.doi.org/10.1038/nrm3965
  • Amendola M, Van Steensel B. Mechanisms and dynamics of nuclear lamina-genome interactions. Curr Opin Cell Biol 2014; 28:61-8; PMID:24694724; http://dx.doi.org/10.1016/j.ceb.2014.03.003
  • Towbin BD, Gonzalez-Sandoval A, Gasser SM. Mechanisms of heterochromatin subnuclear localization. Trends Biochem Sci 2013; 38:356-63; PMID:23746617; http://dx.doi.org/10.1016/j.tibs.2013.04.004
  • Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genetics 2001; 2:292-301; PMID:11283701; http://dx.doi.org/10.1038/35066075
  • Bickmore WA. The spatial organization of the human genome. Annual Rev Genomics Hum Genetics 2013; 14:67-84; PMID:23875797; http://dx.doi.org/10.1146/annurev-genom-091212-153515
  • Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 2005; 3:e157; PMID:15839726; http://dx.doi.org/10.1371/journal.pbio.0030157
  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genetics 2001; 10:211-9; PMID:11159939; http://dx.doi.org/10.1093/hmg/10.3.211
  • Hartl TA, Smith HF, Bosco G. Chromosome alignment and transvection are antagonized by condensin II. Science 2008; 322:1384-7; PMID:19039137; http://dx.doi.org/10.1126/science.1164216
  • Bauer CR, Hartl TA, Bosco G. Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLoS Genetics 2012; 8:e1002873; PMID:22956908; http://dx.doi.org/10.1371/journal.pgen.1002873
  • Bozler J, Nguyen HQ, Rogers GC, Bosco G. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster. G3: Genes|Genomes|Genetics 2015; 5:341-52
  • Mazumder A, Roopa T, Basu A, Mahadevan L, Shivashankar GV. Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus. Biophys J 2008; 95:3028-35; PMID:18556763; http://dx.doi.org/10.1529/biophysj.108.132274
  • Bol'shakova AV, Petukhova OA, Pinaev GP, Magnusson KE. Comparative analysis of subcellular fractionation methods for revealing α-actinin 1 and α-actinin 4 in A431 cells. Cell Tissue Biol 2009; 3:188-97; http://dx.doi.org/10.1134/S1990519X09020114
  • Johnson N, Krebs M, Boudreau R, Giorgi G, LeGros M, Larabell C. Actin-filled nuclear invaginations indicate degree of cell de-differentiation. Differentiation 2003; 71:414-24; PMID:12969334; http://dx.doi.org/10.1046/j.1432-0436.2003.7107003.x
  • Olins AL, Olins DE. The mechanism of granulocyte nuclear shape determination: possible involvement of the centrosome. Eur J Cell Biol 2005; 84:181-8; PMID:15819399; http://dx.doi.org/10.1016/j.ejcb.2004.12.021
  • Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC, Kirchhausen T, Walz T. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 2004; 432:573-9; PMID:15502812; http://dx.doi.org/10.1038/nature03079
  • Avinoam O, Schorb M, Beese CJ, Briggs JAG, Kaksonen M. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 2015; 348:1369-72; PMID:26089517; http://dx.doi.org/10.1126/science.aaa9555
  • Lewellyn EB, Pedersen RTA, Hong J, Lu R, Morrison HM, Drubin DG. An engineered minimal WASP-myosin fusion protein reveals essential functions for endocytosis. Dev Cell 2015; 35:281-94; PMID:26555049; http://dx.doi.org/10.1016/j.devcel.2015.10.007
  • Lundmark R, Doherty GJ, Howes MT, Cortese K, Vallis Y, Parton RG, McMahon HT. The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol 2008; 18:1802-8; PMID:19036340; http://dx.doi.org/10.1016/j.cub.2008.10.044
  • Boucrot E, Ferreira APA, Almeida-Souza L, Debard S, Vallis Y, Howard G, Bertot L, Sauvonnet N, McMahon HT. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 2015; 517:460-5; PMID:25517094; http://dx.doi.org/10.1038/nature14067
  • Morén B, Shah C, Howes MT, Schieber NL, McMahon HT, Parton RG, Daumke O, Lundmark R. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol Biol Cell 2012; 23:1316-29; http://dx.doi.org/10.1091/mbc.E11-09-0787
  • Senju Y, Itoh Y, Takano K, Hamada S, Suetsugu S. Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J Cell Sci 2011; 124:2032-40; PMID:21610094; http://dx.doi.org/10.1242/jcs.086264
  • Oertle T, Schwab ME. Nogo and its paRTNers. Trends Cell Biol 2003; 13:187-94; PMID:12667756; http://dx.doi.org/10.1016/S0962-8924(03)00035-7
  • Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 2006; 124:573-86; PMID:16469703; http://dx.doi.org/10.1016/j.cell.2005.11.047
  • Hu J, Shibata Y, Voss C, Shemesh T, Li Z, Coughlin M, Kozlov MM, Rapoport TA, Prinz WA. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 2008; 319:1247-50; PMID:18309084; http://dx.doi.org/10.1126/science.1153634
  • Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA. Mechanisms determining the morphology of the peripheral ER. Cell 2010; 143:774-88; PMID:21111237; http://dx.doi.org/10.1016/j.cell.2010.11.007
  • Antonin W. Nuclear Envelope: membrane bending for pore formation? Curr Biol 2009; 19:R410-R2; PMID:19467209; http://dx.doi.org/10.1016/j.cub.2009.03.053
  • Kiseleva E, Morozova KN, Voeltz GK, Allen TD, Goldberg MW. Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth. J Structural Biol 2007; 160:224-35; PMID:17889556; http://dx.doi.org/10.1016/j.jsb.2007.08.005
  • Nickel W, Brügger B, Wieland FT. Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 2002; 115:3235-40; PMID:12140255
  • Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R. COPII and the regulation of protein sorting in mammals. Nat Cell Biol 2012; 14:20-8; http://dx.doi.org/10.1038/ncb2390
  • Beck R, Sun Z, Adolf F, Rutz C, Bassler J, Wild K, Sinning I, Hurt E, Brügger B, Béthune J, et al. Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proc Natl Acad Sci U S A 2008; 105:11731-6; PMID:18689681; http://dx.doi.org/10.1073/pnas.0805182105
  • Lee MCS, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 2005; 122:605-17; PMID:16122427; http://dx.doi.org/10.1016/j.cell.2005.07.025
  • Cotter L, Allen TD, Kiseleva E, Goldberg MW. Nuclear membrane disassembly and rupture. J Mol Biol 2007; 369:683-95; PMID:17467734; http://dx.doi.org/10.1016/j.jmb.2007.03.051
  • Liu J, Prunuske AJ, Fager AM, Ullman KS. The COPI complex functions in nuclear envelope breakdown and is recruited by the nucleoporin Nup153. Dev Cell 2003; 5:487-98; PMID:12967567; http://dx.doi.org/10.1016/S1534-5807(03)00262-4
  • Prunuske AJ, Liu J, Elgort S, Joseph J, Dasso M, Ullman KS. Nuclear envelope breakdown is coordinated by both Nup358/RanBP2 and Nup153, two nucleoporins with zinc finger modules. Mol Biol Cell 2006; 17:760-9; PMID:16314393; http://dx.doi.org/10.1091/mbc.E05-06-0485
  • Devos D, Dokudovskaya S, Alber F, Williams R, Chait BT, Sali A, Rout MP. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol 2004; 2:e380; PMID:15523559; http://dx.doi.org/10.1371/journal.pbio.0020380
  • Brohawn SG, Leksa NC, Spear ED, Rajashankar KR, Schwartz TU. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science 2008; 322:1369-73; PMID:18974315; http://dx.doi.org/10.1126/science.1165886
  • Somsel Rodman J, Wandinger-Ness A. Rab GTPases coordinate endocytosis. J Cell Sci 2000; 113:183-92; PMID:10633070
  • Pfeffer SR. Rab GTPase regulation of membrane identity. Curr Opin Cell Biol 2013; 25:414-9; PMID:23639309; http://dx.doi.org/10.1016/j.ceb.2013.04.002
  • Audhya A, Desai A, Oegema K. A role for Rab5 in structuring the endoplasmic reticulum. J Cell Biol 2007; 178:43-56; PMID:17591921; http://dx.doi.org/10.1083/jcb.200701139
  • McCullough J, Colf LA, Sundquist WI. Membrane fission reactions of the mammalian ESCRT pathway. Annual Rev Biochem 2013; 82:663-92; http://dx.doi.org/10.1146/annurev-biochem-072909-101058
  • Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG. ESCRT-III controls nuclear envelope reformation. Nature 2015; 522:236-9; PMID:26040713; http://dx.doi.org/10.1038/nature14503
  • Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, Thoresen SB, Brech A, Raiborg C, Stenmark H. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 2015; 522:231-5; PMID:26040712; http://dx.doi.org/10.1038/nature14408
  • Prüfert K, Vogel A, Krohne G. The lamin CxxM motif promotes nuclear membrane growth. J Cell Sci 2004; 117:6105-16; PMID:15546914; http://dx.doi.org/10.1242/jcs.01532
  • McClintock D, Gordon LB, Djabali K. Hutchinson–Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-lamin A G608G antibody. Proc Natl Acad Sci USA 2006; 103:2154-9; PMID:16461887; http://dx.doi.org/10.1073/pnas.0511133103
  • Goulbourne CN, Vaux DJ. HIV protease inhibitors inhibit FACE1/ZMPSTE24: a mechanism for acquired lipodystrophy in patients on highly active antiretroviral therapy? Biochem Society Transactions 2010; 38:292-6; PMID:20074077; http://dx.doi.org/10.1042/BST0380292
  • Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, Miner JH, Young SG, Fong LG. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci U S A 2005; 102:12873-8; PMID:16129834; http://dx.doi.org/10.1073/pnas.0505767102
  • Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 2006; 311:1621-3; PMID:16484451; http://dx.doi.org/10.1126/science.1124875
  • Mallampalli MP, Huyer G, Bendale P, Gelb MH, Michaelis S. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 2005; 102:14416-21; PMID:16186497; http://dx.doi.org/10.1073/pnas.0503712102
  • Shimi T, Kittisopikul M, Tran J, Goldman AE, Adam SA, Zheng Y, Jaqaman K, Goldman RD. Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol Biol Cell 2015; 26:4075-86; PMID:26310440; http://dx.doi.org/10.1091/mbc.E15-07-0461
  • Roblek M, Schüchner S, Huber V, Ollram K, Vlcek-Vesely S, Foisner R, Wehnert M, Ogris E. Monoclonal antibodies specific for disease-associated point-mutants: Lamin A/C R453W and R482W. PLoS One 2010; 5:e10604; PMID:20498701; http://dx.doi.org/10.1371/journal.pone.0010604
  • Gant TM, Harris CA, Wilson KL. Roles of LAP2 proteins in nuclear assembly and DNA replication: Truncated LAP2β proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. J Cell Biol 1999; 144:1083-96; PMID:10087255; http://dx.doi.org/10.1083/jcb.144.6.1083
  • Isaac C, Pollard JW, Meier UT. Intranuclear endoplasmic reticulum induced by Nopp140 mimics the nucleolar channel system of human endometrium. J Cell Sci 2001; 114:4253-64; PMID:11739657
  • Chang W, Worman HJ, Gundersen GG. Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol 2015; 208:11-22; PMID:25559183; http://dx.doi.org/10.1083/jcb.201409047
  • Gehrig K, Lagace TA, Ridgway ND. Oxysterol activation of phosphatidylcholine synthesis involves CTP:phosphocholine cytidylyltransferase α translocation to the nuclear envelope. Biochem J 2009; 418:209-17; PMID:18980580; http://dx.doi.org/10.1042/BJ20081923
  • Gehrig K, Cornell RB, Ridgway ND. Expansion of the nucleoplasmic reticulum requires the coordinated activity of lamins and CTP:phosphocholine cytidylyltransferase α. Mol Biol Cell 2008; 19:237-47; PMID:17959832; http://dx.doi.org/10.1091/mbc.E07-02-0179
  • Terzakis JA. The nucleolar channel system of the human endometrium. J Cell Biol 1965; 27:293-304; PMID:5884628; http://dx.doi.org/10.1083/jcb.27.2.293
  • Kittur N, Zapantis G, Aubuchon M, Santoro N, Bazett-Jones DP, Meier UT. The nucleolar channel system of human endometrium is related to endoplasmic reticulum and R-rings. Mol Biol Cell 2007; 18:2296-304; PMID:17429075; http://dx.doi.org/10.1091/mbc.E07-02-0154
  • Guffanti E, Kittur N, Brodt ZN, Polotsky AJ, Kuokkanen SM, Heller DS, Young SL, Santoro N, Thomas Meier U. Nuclear pore complex proteins mark the implantation window in human endometrium. J Cell Sci 2008; 121:2037-45; PMID:18505792; http://dx.doi.org/10.1242/jcs.030437
  • Kohorn EI, Rice SI, Hemperly S, Gordon M. The relation of the structure of progestational steroids to nucleolar differentiation in human endometrium. J Clin Endocrinol Metab 1972; 34:257-64; PMID:4110445; http://dx.doi.org/10.1210/jcem-34-2-257
  • Dockery P, Pritchard K, Warren MA, Li TC, Cooke ID. Uterus and endometrium: Changes in nuclear morphology in the human endometrial glandular epithelium in women with unexplained infertility. Hum Repro 1996; 11:2251-6; PMID:8943538; http://dx.doi.org/10.1093/oxfordjournals.humrep.a019085
  • Wynn RM. Intrauterine devices: effects on ultrastructure of human endometrium. Science 1967; 156:1508-10; PMID:5611026; http://dx.doi.org/10.1126/science.156.3781.1508
  • Feria-Velasco A, Aznar-Ramos R, González-Angulo A. Ultrastructural changes found in the endometrium of women using megestrol acetate for contraception. Contraception 1972; 5:187-201; PMID:4650649; http://dx.doi.org/10.1016/0010-7824(72)90045-5
  • Pryse-Davies J, Ryder TA, Lynn MacKenzie M. In vivo production of the nucleolar channel system in post menopausal endometrium. Cell Tissue Res 1979; 203:493-8; PMID:519737; http://dx.doi.org/10.1007/BF00233277
  • Nejat EJ, Szmyga MJ, Zapantis G, Meier UT. Progesterone threshold determines nucleolar channel system formation in human endometrium. Repro Sci 2014; 21:915-20; PMID:24458483; http://dx.doi.org/10.1177/1933719113519177
  • Olins AL, Buendia B, Herrmann H, Lichter P, Olins DE. Retinoic acid induction of nuclear envelope-limited chromatin sheets in HL-60. Exp Cell Res 1998; 245:91-104; PMID:9828104; http://dx.doi.org/10.1006/excr.1998.4210
  • Olins D, Olins A. Nuclear envelope-limited chromatin sheets (ELCS) and heterochromatin higher order structure. Chromosoma 2009; 118:537-48; PMID:19521714; http://dx.doi.org/10.1007/s00412-009-0219-3
  • Popken J, Schmid VJ, Strauss A, Guengoer T, Wolf E, Zakhartchenko V. Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development. J Repro Dev 2016; 62:127-35; PMID:26640117; http://dx.doi.org/10.1262/jrd.2015-100