1,434
Views
8
CrossRef citations to date
0
Altmetric
Original Research

UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle

, , , , , , , , & show all
Pages 70-80 | Received 29 Jun 2016, Accepted 25 Oct 2016, Published online: 03 Jan 2017

References

  • Guo T, Fang Y. Functional organization and dynamics of the cell nucleus. Front Plant Sci 2014; 5:378; PMID:25161658
  • Petrovská B, Šebela M, Doležel J. Inside a plant nucleus: discovering the proteins. J Exp Bot 2015; 66:1627-40; http://dx.doi.org/10.1093/jxb/erv041
  • Sutherland HGE, Mumford GK, Newton K, Ford LV, Farrall R, Dellaire G, Cáceres JF, Bickmore WA. Large-scale identification of mammalian proteins localized to nuclear sub-compartments. Hum Mol Genet 2001; 10:1995-2011; PMID:11555636; http://dx.doi.org/10.1093/hmg/10.18.1995
  • Wente SR, Rout MP. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2010; 2:a000562; PMID:20630994; http://dx.doi.org/10.1101/cshperspect.a000562
  • Aebi U, Cohn J, Buhle L, Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 1986; 323:560-4; PMID:3762708; http://dx.doi.org/10.1038/323560a0
  • Worman HJ, Gundersen GG. Here come the SUNs: a nucleocytoskeletal missing link. Trends Cell Biol 2006; 16:67-9; PMID:16406617; http://dx.doi.org/10.1016/j.tcb.2005.12.006
  • Graumann K, Bass HW, Parry G. SUNrises on the international plant nucleus consortium. Nucleus 2013; 4:3-7; PMID:23324458; http://dx.doi.org/10.4161/nucl.23385
  • Bae MS, Cho EJ, Choi EY, Park OK. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 2003; 36:652-63; PMID:14617066; http://dx.doi.org/10.1046/j.1365-313X.2003.01907.x
  • Calikowski TT, Meulia T, Meier I. A proteomic study of the Arabidopsis nuclear matrix. J Cell Biochem 2003; 90:361-78; PMID:14505352; http://dx.doi.org/10.1002/jcb.10624
  • Bigeard J, Rayapuram N, Pflieger D, Hirt H. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. Proteomics 2014; 14:2127-40; PMID:24889195; http://dx.doi.org/10.1002/pmic.201400073
  • Jones AME, MacLean D, Studholme DJ, Serna-Sanz A, Andreasson E, Rathjen JP, Peck SC. Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. J Proteomics 2009; 72:439-51; PMID:19245862; http://dx.doi.org/10.1016/j.jprot.2009.02.004
  • Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 2005; 16:260-9; PMID:15496452; http://dx.doi.org/10.1091/mbc.E04-09-0791
  • Aki T, Yanagisawa S. Application of rice nuclear proteome analysis to the identification of evolutionarily conserved and glucose-responsive nuclear proteins. J Proteome Res 2009; 8:3912-24; PMID:19621931; http://dx.doi.org/10.1021/pr900187e
  • Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S. Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 2009; 8:1579-98; PMID:19321431; http://dx.doi.org/10.1074/mcp.M800601-MCP200
  • Jaiswal DK, Ray D, Choudhary MK, Subba P, Kumar A, Verma J, Kumar R, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics of dehydration response in the rice nucleus: New insights into the molecular basis of genotype-specific adaptation. Proteomics 2013; 13:3478-97; PMID:24133045; http://dx.doi.org/10.1002/pmic.201300284
  • Khan MMK, Komatsu S. Rice proteomics: recent developments and analysis of nuclear proteins. Phytochemistry 2004; 65:1671-81; PMID:15276429; http://dx.doi.org/10.1016/j.phytochem.2004.04.012
  • Li G, Nallamilli BRR, Tan F, Peng Z. Removal of high-abundance proteins for nuclear subproteome studies in rice (Oryza sativa) endosperm. Electrophoresis 2008; 29:604-17; PMID:18203134; http://dx.doi.org/10.1002/elps.200700412
  • Mujahid H, Tan F, Zhang J, Nallamilli BRR, Pendarvis K, Peng Z. Nuclear proteome response to cell wall removal in rice (Oryza sativa). Proteome Sci 2013; 11:26; PMID:23777608; http://dx.doi.org/10.1186/1477-5956-11-26
  • Tan F, Li G, Chitteti BR, Peng Z. Proteome and phosphoproteome analysis of chromatin associated proteins in rice (Oryza sativa). Proteomics 2007; 7:4511-27; PMID:18022940; http://dx.doi.org/10.1002/pmic.200700580
  • Lee BJ, Kwon SJ, Kim SK, Kim KJ, Park CJ, Kim YJ, Park OK, Paek KH. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis. Biochem Biophys Res Commun 2006; 351:405-11; PMID:17070775; http://dx.doi.org/10.1016/j.bbrc.2006.10.071
  • Kumar R, Kumar A, Subba P, Gayali S, Barua P, Chakraborty S, Chakraborty N. Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network. J Proteomics 2014; 105:58-73; PMID:24747304; http://dx.doi.org/10.1016/j.jprot.2014.04.002
  • Pandey A, Choudhary MK, Bhushan D, Chattopadhyay A, Chakraborty S, Datta A, Chakraborty N. The Nuclear proteome of chickpea (Cicer arietinum L.) reveals predicted and unexpected proteins. J Proteome Res 2006; 5:3301-11; PMID:17137331; http://dx.doi.org/10.1021/pr060147a
  • Pandey A, Chakraborty S, Datta A, Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L). Mol Cell Proteomics 2008; 7:88-107; PMID:17921517; http://dx.doi.org/10.1074/mcp.M700314-MCP200
  • Subba P, Kumar R, Gayali S, Shekhar S, Parveen S, Pandey A, Datta A, Chakraborty S, Chakraborty N. Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 2013; 13:1973-92; PMID:23798506; http://dx.doi.org/10.1002/pmic.201200380
  • Repetto O, Rogniaux H, Firnhaber C, Zuber H, Küster H, Larré C, Thompson R, Gallardo K. Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. Plant J 2008; 56:398-410; PMID:18643982; http://dx.doi.org/10.1111/j.1365-313X.2008.03610.x
  • Casati P, Campi M, Chu F, Suzuki N, Maltby D, Guan S, Burlingame AL, Walbot V. Histone acetylation and chromatin remodeling are required for UV-B–dependent transcriptional activation of regulated genes in maize. Plant Cell 2008; 20:827-42; PMID:18398050; http://dx.doi.org/10.1105/tpc.107.056457
  • Guo B, Chen Y, Li C, Wang T, Wang R, Wang B, Hu S, Du X, Xing H, Song X, et al. Maize (Zea mays L.) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines. Proteomics 2014; 14:1071-87; PMID:24677780; http://dx.doi.org/10.1002/pmic.201300147
  • Abdalla KO, Rafudeen MS. Analysis of the nuclear proteome of the resurrection plant Xerophyta viscosa in response to dehydration stress using iTRAQ with 2D LC and tandem mass spectrometry. J Proteomics 2012; 75:2361-74; PMID:22361341; http://dx.doi.org/10.1016/j.jprot.2012.02.006
  • Abdalla KO, Baker B, Rafudeen MS. Proteomic analysis of nuclear proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Growth Regul 2010; 62:279-92; http://dx.doi.org/10.1007/s10725-010-9497-2
  • Cooper B, Campbell KB, Feng J, Garrett WM, Frederick R. Nuclear proteomic changes linked to soybean rust resistance. Mol Biosyst 2011; 7:773-83; PMID:21132161; http://dx.doi.org/10.1039/C0MB00171F
  • Bancel E, Bonnot T, Davanture M, Branlard G, Zivy M, Martre P. Proteomic approach to identify nuclear proteins in wheat grain. J Proteome Res 2015; 14:4432-9; PMID:26228564; http://dx.doi.org/10.1021/acs.jproteome.5b00446
  • Bonnot T, Bancel E, Chambon C, Boudet J, Branlard G, Martre P. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain. Front Plant Sci 2015; 6:905; PMID:26579155; http://dx.doi.org/10.3389/fpls.2015.00905
  • Petrovská B, Jerábková H, Chamrád I, Vrána J, Lenobel R, Urinovská J, Šebela M, Doležel J. Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet Genome Res 2014; 143:78-86; http://dx.doi.org/10.1159/000365311
  • International Barley Genome Sequencing Consortium A physical, genetic and functional sequence assembly of the barley genome. Nature 2012; 491:711-6; PMID:23075845
  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389-402; PMID:9254694; http://dx.doi.org/10.1093/nar/25.17.3389
  • Pieper U, Eswar N, Braberg H, Madhusudhan MS, Davis FP, Stuart AC, Mirkovic N, Rossi A, Marti-Renom MA, Fiser A. et al. MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 2004; 32:D217-D222; PMID:14681398; http://dx.doi.org/10.1093/nar/gkh095
  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res 2015; 43:D222-226; PMID:25414356; http://dx.doi.org/10.1093/nar/gku1221
  • Xiong E, Zheng C, Wu X, Wang W. Protein subcellular location: The gap between prediction and experimentation. Plant Mol Biol Rep 2015; 34:52-61; http://dx.doi.org/10.1007/s11105-015-0898-2
  • Chou KC, Shen HB. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 2010; 5:e11335
  • Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006; 64:643-51; PMID:16752418; http://dx.doi.org/10.1002/prot.21018
  • Shen HB, Chou KC. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng Des Sel 2007; 20:561-7; PMID:17993650; http://dx.doi.org/10.1093/protein/gzm057
  • Lysák MA, Číhalíková J, Kubaláková M, Šimková H, Künzel G, Doležel J. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L). Chromosome Res 1999; 7:431-44; http://dx.doi.org/10.1023/A:1009293628638
  • Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L). Genetics 2000; 156:2033-41
  • Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA. High-throughput Agrobacterium-mediated barley transformation. Plant Methods 2008; 4:22; PMID:18822125; http://dx.doi.org/10.1186/1746-4811-4-22
  • Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M. TILLING - a shortcut in functional genomics. J Appl Genet 2011; 52:371-90; PMID:21912935; http://dx.doi.org/10.1007/s13353-011-0061-1
  • Bennett MD, Smith JB. Nuclear DNA Amounts in Angiosperms. Philos Trans R Soc Lond, B, Biol Sci 1976; 274:227-74; PMID:6977; http://dx.doi.org/10.1098/rstb.1976.0044
  • Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 2011; 23:1249-63; PMID:21467582; http://dx.doi.org/10.1105/tpc.110.082537
  • Mayer KFX, Waugh R, Brown JWS, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature 2012; 491:711-6; PMID:23075845
  • Luc PV, Tempst P. PINdb: a database of nuclear protein complexes from human and yeast. Bioinformatics 2004; 20:1413-5; PMID:15087322; http://dx.doi.org/10.1093/bioinformatics/bth114
  • Bickmore WA, Sutherland HGE. Addressing protein localization within the nucleus. EMBO J 2002; 21:1248-54; PMID:11889031; http://dx.doi.org/10.1093/emboj/21.6.1248
  • Dellaire G, Farrall R, Bickmore WA. The Nuclear Protein Database (NPD): sub-nuclear localisation and functional annotation of the nuclear proteome. Nucleic Acids Res 2003; 31:328-30; PMID:12520015; http://dx.doi.org/10.1093/nar/gkg018
  • Pijnappel WP, Kolkman A, Baltissen MP, Heck A, Jr, Timmers HM. Quantitative mass spectrometry of TATA binding protein-containing complexes and subunit phosphorylations during the cell cycle. Proteome Sci 2009; 7:46; PMID:20034391; http://dx.doi.org/10.1186/1477-5956-7-46
  • Tenga MJ, Lazar IM. Proteomic study reveals a functional network of cancer markers in the G1-Stage of the breast cancer cell cycle. BMC Cancer 2014; 14:710; PMID: 25252636; http://dx.doi.org/10.1186/1471-2407-14-710
  • Farkash-Amar S, Eden E, Cohen A, Geva-Zatorsky N, Cohen L, Milo R, Sigal A, Danon T, Alon U. Dynamic proteomics of human protein level and localization across the cell cycle. PLoS One 2012; 7:e48722; PMID:23144944; http://dx.doi.org/10.1371/journal.pone.0048722
  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res 2015; 43:D222-226; PMID:25414356; http://dx.doi.org/10.1093/nar/gku1221
  • McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Williams WP, et al. AgBase: a functional genomics resource for agriculture. BMC Genomics 2006; 7:229; PMID:16961921; http://dx.doi.org/10.1186/1471-2164-7-229