333
Views
0
CrossRef citations to date
0
Altmetric
Review

Sensing the squeeze: nuclear mechanotransduction in health and disease

ORCID Icon & ORCID Icon
Article: 2374854 | Received 23 Feb 2024, Accepted 26 Jun 2024, Published online: 01 Jul 2024

References

  • Denais C, Lammerding J. Nuclear mechanics in cancer. In: Advances in Experimental Medicine and Biology. Vol. 773; 2014. p. 435.
  • Deville SS, Cordes N. The extracellular, cellular, and nuclear stiffness, a trinity in the cancer resistome—a review. Front Oncol. 2019;9:496133. doi: 10.3389/fonc.2019.01376
  • Verstraeten VLRM, Ji JY, Cummings KS, et al. Increased mechanosensitivity and nuclear stiffness in Hutchinson–Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell. 2008;7(3):383. doi: 10.1111/j.1474-9726.2008.00382.x
  • Worman HJ. Nuclear lamins and laminopathies. J Pathol. 2012;226(2):316. doi: 10.1002/path.2999
  • Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 2017;171(6):1397. doi: 10.1016/j.cell.2017.10.008
  • Damodaran K, Venkatachalapathy S, Alisafaei F, et al. Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response. Mol Biol Cell. 2018;29(25):3039. doi: 10.1091/mbc.E18-04-0256
  • Lammerding J, Hsiao J, Schulze PC, et al. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol. 2005;170(5):781. doi: 10.1083/jcb.200502148
  • Lombardi ML, Lammerding J. Altered mechanical properties of the nucleus in disease. Methods in cell biology. Vol. 98. Elsevier Masson SAS; 2010. doi: 10.1016/S0091-679X(10)98006-0
  • Avery OT, MacLEOD CM, McCARTY M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med. 1979;149(2):297. doi: 10.1084/jem.149.2.297
  • Watson ML. The nuclear envelope: its structure and relation to cytoplasmic membranes. J Biophys Biochem Cytol. 1955;1(3):257. doi: 10.1083/jcb.1.3.257
  • Hoelz A, Debler EW, Blobel G. The structure of the nuclear pore complex. Annu Rev Biochem. 2011;80:613. doi: 10.1146/annurev-biochem-060109-151030
  • Burla R, La Torre M, Maccaroni K, et al. Interplay Nucl Envelope Chromatin Physiol Pathol, Nucleus. 2020;11(1):205. doi: 10.1080/19491034.2020.1806661
  • Dahl KN, Ribeiro AJS, Lammerding J. Nuclear shape, mechanics, and mechanotransduction. Circ Res. 2008;102(11):1307. doi: 10.1161/CIRCRESAHA.108.173989
  • Prokocimer M, Davidovich M, Nissim‐Rafinia M, et al. Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med. 2009;13(6):1059. doi: 10.1111/j.1582-4934.2008.00676.x
  • Meinke P, Makarov AA, Thành PL, et al. Nucleoskeleton dynamics and functions in health and disease. Cell Health Cytoskeleton. 2015;7(2015):55–16.
  • Burla R, Torre L, Saggio I. Mammalian telomeres and their partnership with lamins. Nucleus. 2016;7(2):187–202. doi: 10.1080/19491034.2016.1179409
  • Jain N, Iyer KV, Kumar A, et al. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc Natl Acad Sci. 2013;110(28):11349. doi: 10.1073/pnas.1300801110
  • Vaziri A, Mofrad MRK. Mechanics and deformation of the nucleus in micropipette aspiration experiment. J Biomech. 2007;40(9):2053. doi: 10.1016/j.jbiomech.2006.09.023
  • Caille N, Thoumine O, Tardy Y, et al. Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech. 2002;35:177. doi: 10.1016/S0021-9290(01)00201-9
  • Guo M, Ehrlicher AJ, Mahammad S, et al. The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys J. 2013;105(7):1562. doi: 10.1016/j.bpj.2013.08.037
  • Chu F-Y, Haley SC, Zidovska A. On the origin of shape fluctuations of the cell nucleus. Proc Natl Acad Sci. 2017;114:10338. doi: 10.1073/pnas.1702226114
  • Ivanovska I, Swift J, Harada T, et al. Physical plasticity of the nucleus and its manipulation. Methods in Cell Biology. Vol. 98. Elsevier Masson SAS; 2010. p. 207–20. doi: 10.1016/S0091-679X(10)98009-6.
  • Fischer T, Hayn A, Mierke CT. Effect of nuclear stiffness on cell mechanics and migration of human breast cancer cells. Front Cell Dev Biol. 2020;8(1). doi: 10.3389/fcell.2020.00393
  • Capo-Chichi CD, Cai KQ, Smedberg J, et al. Loss of A-type lamin expression compromises nuclear envelope integrity in breast cancer. Chin J Cancer. 2011;30(6):415. doi: 10.5732/cjc.010.10566
  • Dahl KN, Scaffidi P, Islam MF, et al. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2006;103(27):10271. doi: 10.1073/pnas.0601058103
  • Stephens AD, Banigan EJ, Adam SA, et al. Chromatin and lamin a determine two different mechanical response regimes of the cell nucleus. Mol Biol Cell. 2017;28(14):1984. doi: 10.1091/mbc.e16-09-0653
  • Peter M, Kitten GT, Lehner CF, et al. Cloning and sequencing of CDNA clones encoding chicken lamins a and B1 and comparison of the primary structures of vertebrate A-and B-Type lamins. J Mol Biol. 1989;208(3):393. doi: 10.1016/0022-2836(89)90504-4
  • Fisher DZ, Chaudhary N, Blobel G. CDNA sequencing of nuclear lamins a and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci. 1986;83:6450. doi: 10.1073/pnas.83.17.6450
  • Constantinescu D, Gray HL, Sammak PJ, et al. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells. 2006;24(1):177. doi: 10.1634/stemcells.2004-0159
  • Pollard KM, Chan EKL, Grant BJ, et al. In vitro posttranslational modification of lamin B cloned from a human T-Cell line. Mol Cell Biol. 1990;10(5):2164. doi: 10.1128/MCB.10.5.2164
  • Vergnes L, Péterfy M, Bergo MO, et al. Lamin B1 Is required for mouse development and nuclear integrity. Proc Natl Acad Sci USA. 2004;101(28):10428. doi: 10.1073/pnas.0401424101
  • Dechat T, Pfleghaar K, Sengupta K, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22(7):832. doi: 10.1101/gad.1652708
  • Liu SY, Ikegami K. Nuclear lamin phosphorylation: an emerging role in gene regulation and pathogenesis of laminopathies. Nucleus. 2020;11(1):299. doi: 10.1080/19491034.2020.1832734
  • Rowat AC, Lammerding J, Ipsen JH. Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J. 2006;91(12):4649. doi: 10.1529/biophysj.106.086454
  • Shah PP, Donahue G, Otte GL, et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 2013;27(16):1787. doi: 10.1101/gad.223834.113
  • Camps J, Erdos MR, Ried T. The role of lamin B1 for the maintenance of nuclear structure and function. Nucleus. 2015;6(1):8–14. doi: 10.1080/19491034.2014.1003510
  • Steen RL, Collas P. Mistargeting of B-Type lamins at the end of mitosis: implications on cell survival and regulation of lamins A/C expression. J Cell Bio. 2001;153:621. doi: 10.1083/jcb.153.3.621
  • Srivastava LK, Ju Z, Ghagre A, et al. Spatial distribution of lamin A/C determines nuclear stiffness and stress-mediated deformation. J Cell Sci. 2021;134(10). doi: 10.1242/jcs.248559
  • Lammerding J. Mechanics of the nucleus. In: Terjung R, editor. Comprehensive physiology. Vol. 1. Hoboken, NJ (USA): John Wiley & Sons, Inc.; 2011. p. 783–807.
  • Guilluy C, Osborne LD, Van LL, et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol. 2014;16(4):376. doi: 10.1038/ncb2927
  • Lammerding J, Schulze PC, Takahashi T, et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest. 2004;113(3):370. doi: 10.1172/JCI200419670
  • Zhang Q, Tamashunas AC, Agrawal A, et al. Local, transient tensile stress on the nuclear membrane causes membrane rupture. MboC. 2019;30(7):899. doi: 10.1091/mbc.E18-09-0604
  • Harada T, Swift J, Irianto J, et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J Cell Biol. 2014;204(5):669. doi: 10.1083/jcb.201308029
  • Vahabikashi A, Sivagurunathan S, Nicdao FAS, et al. Nuclear lamin isoforms differentially contribute to LINC complex-dependent nucleocytoskeletal coupling and whole-cell mechanics. Proc Natl Acad Sci. 2022;119(17):e2121816119. doi: 10.1073/pnas.2121816119
  • Stephens AD, Liu PZ, Banigan EJ, et al. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol Biol Cell. 2018;29:220–233.
  • Gosden JR, Mitchell AR. Characterisation of DNA from condensed and dispersed human chromatin. Exp Cell Res. 1975;92(1):131. doi: 10.1016/0014-4827(75)90646-1
  • Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenet Chromatin. 2015;8(1). doi: 10.1186/1756-8935-8-3
  • Igo-Kemenes T, Hörz W, Zachau HG. Chromatin. Annu Rev Biochem. 1982;51(1):89–121. doi: 10.1146/annurev.bi.51.070182.000513
  • Smith GR. DNA supercoiling: another level for regulating gene expression. Cell. 1981;24(3):599. doi: 10.1016/0092-8674(81)90085-4
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381. doi: 10.1038/cr.2011.22
  • Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010;463(7280):474. doi: 10.1038/nature08911
  • Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991;55(3):451. doi: 10.1128/mr.55.3.451-458.1991
  • Monk M. Epigenetic programming of differential gene expression in development and evolution. Dev Genet. 1995;17(3):188. doi: 10.1002/dvg.1020170303
  • Bestor TH, Chandler VL, Feinberg AP. Epigenetic effects in eukaryotic gene expression. Dev Genet. 1994;15(6):458. doi: 10.1002/dvg.1020150603
  • Turner BM. Histone acetylation and control of gene expression. J Cell Sci. 1991;99(1):13–20. doi: 10.1242/jcs.99.1.13
  • Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell. 1992;70(3):375. doi: 10.1016/0092-8674(92)90162-6
  • Padeken J, Heun P. Nucleolus and nuclear periphery: velcro for heterochromatin. Curr Opin Cell Biol. 2014;28:54. doi:10.1016/j.ceb.2014.03.001
  • Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications–writers that read. EMBO Rep. 2015;16(11):1467. doi: 10.15252/embr.201540945
  • Bártová E, Krejcí J, Harničarová A, et al. Histone modifications and nuclear architecture: a review. J Histochem Cytochem. 2008;56(8):711. doi: 10.1369/jhc.2008.951251
  • van Steensel B, Belmont AS. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell. 2017;169(5):780. doi: 10.1016/j.cell.2017.04.022
  • Schreiner SM, Koo PK, Zhao Y, et al. The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat Commun. 2015;6(1). doi: 10.1038/ncomms8159
  • Miranda TB, Cortez CC, Yoo CB, et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 2009;8(6):1579. doi: 10.1158/1535-7163.MCT-09-0013
  • Calero-Cuenca FJ, Janota CS, Gomes ER. Dealing with the nucleus during cell migration. Curr Opin Cell Biol. 2018;50:35. doi: 10.1016/j.ceb.2018.01.014
  • Heo S-J, Driscoll TP, Thorpe SD, et al. Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity. Elife. 2016;5:e18207. doi: 10.7554/eLife.18207
  • Smoyer CJ, Jaspersen SL. Breaking down the wall: the nuclear envelope during mitosis. Curr Opin Cell Biol. 2014;26(1):1–9. doi: 10.1016/j.ceb.2013.08.002
  • Crisp M, Liu Q, Roux K, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Bio. 2006;172(1):41. doi: 10.1083/jcb.200509124
  • Bouzid T, Kim E, Riehl BD, et al. The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J Biol Eng. 2019;13(1). doi: 10.1186/s13036-019-0197-9
  • Rajgor D, Shanahan CM. Nesprins: from the nuclear envelope and beyond. Expert Rev Mol Med. 2013;15:e5. doi: 10.1017/erm.2013.6
  • Morris GE, Randles KN. Nesprin isoforms: are they inside or outside the nucleus?
  • Zhang Q, Skepper JN, Yang F, et al. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci. 2001;114:4485. doi: 10.1242/jcs.114.24.4485
  • Sakamoto N, Ogawa M, Sadamoto K, et al. Mechanical role of nesprin-1-mediated nucleus–actin filament binding in cyclic stretch-induced fibroblast elongation. Cell Mol Bioeng. 2017;10(4):327. doi: 10.1007/s12195-017-0487-6
  • Lombardi ML, Jaalouk DE, Shanahan CM, et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem. 2011;286(30):26743. doi: 10.1074/jbc.M111.233700
  • Méjat A. LINC complexes in health and disease. Nucleus. 2010;1(1):40. doi: 10.4161/nucl.1.1.10530
  • Meinke P, Nguyen TD, Wehnert MS. The LINC complex and human disease. Biochem Soc Trans. 2011;39:1693. doi: 10.1042/BST20110658
  • Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000;9(1):109. doi: 10.1093/hmg/9.1.109
  • Chen L, Lee L, Kudlow BA, et al. LMNA Mutations Atyp Werner’s Syndr, Lancet. 2003;362(9382):440. doi: 10.1016/S0140-6736(03)14069-X
  • De Sandre-Giovannoli A, Chaouch M, Kozlov S, et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (charcot-marie-tooth disorder type 2) and mouse. Am J Hum Genet. 2002;70:726. doi: 10.1086/339274
  • Luxton GG, Starr DA. KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus. Curr Opin Cell Biol. 2014;28:69. doi:10.1016/j.ceb.2014.03.002
  • Rajgor D, Mellad JA, Autore F, et al. Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLOS ONE. 2012;7(7):e40098. doi: 10.1371/journal.pone.0040098
  • Postel R, Ketema M, Kuikman I, et al. Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish. J Cell Sci. 2011;124(5):755. doi: 10.1242/jcs.081174
  • Roux KJ, Crisp ML, Liu Q, et al. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci. 2009;106(7):2194. doi: 10.1073/pnas.0808602106
  • Horn HF, Kim DI, Wright GD, et al. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J Cell Bio. 2013;202(7):1023. doi: 10.1083/jcb.201304004
  • Behrens TW, Jagadeesh J, Scherle P, et al. Jaw1, a lymphoid-restricted membrane protein localized to the endoplasmic reticulum. J Immunol (Baltim, Md 1950). 1994;153(2):682. doi: 10.4049/jimmunol.153.2.682
  • Alam S, Lovett DB, Dickinson RB, et al. Nuclear forces and cell mechanosensing. Prog Mol Biol Transl Sci. 2014; 126:205–215.
  • Swift J, Discher DE. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J Cell Sci. 2014;127:3005. doi: 10.1242/jcs.149203
  • Lovett DB, Shekhar N, Nickerson JA, et al. Modulation of nuclear shape by substrate rigidity. Cell Mol Bioeng. 2013;6(2):230. doi: 10.1007/s12195-013-0270-2
  • Doss BL, Pan M, Gupta M, et al. Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress. Proc Natl Acad Sci USA. 2020;117(23):12817. doi: 10.1073/pnas.1917555117
  • Walcott S, Sun SX. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Biophysical Journal. 2010;98(3):365a. doi: 10.1016/j.bpj.2009.12.1969
  • Zhou DW, Lee TT, Weng S, et al. Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin–paxillin recruitment at single focal adhesions. Mol Biol Cell. 2017;28(14):1901. doi: 10.1091/mbc.e17-02-0116
  • Emon B, Joy MSH, Lalonde L, et al. Nuclear deformation regulates YAP dynamics in cancer associated fibroblasts. Acta Biomater. 2024;173(93):93–108. doi: 10.1016/j.actbio.2023.11.015
  • Niethammer P. Components and mechanisms of nuclear mechanotransduction. Annu Rev Cell Dev Biol. 2021;37(1):233. doi: 10.1146/annurev-cellbio-120319-030049
  • Isermann P, Lammerding J. Nuclear mechanics and mechanotransduction in health and disease. Curr Biol. 2013;23:R1113. doi: 10.1016/j.cub.2013.11.009
  • Irianto J, Pfeifer CR, Ivanovska IL, et al. Nuclear lamins in cancer. Cell Mol Bioeng. 2016;9:258. doi: 10.1007/s12195-016-0437-8
  • Koushki N, Ghagre A, Srivastava LK, et al. Nuclear compression regulates YAP spatiotemporal fluctuations in living cells. Proc Natl Acad Sci. 2023;120(28):e2301285120. doi: 10.1073/pnas.2301285120
  • Huang Y, Zhang S, Park J-I. Nuclear actin dynamics in gene expression, DNA repair, and cancer. In: Kubiak JZ, Kloc M, editors. Nuclear, chromosomal, and genomic architecture in biology and medicine. Springer; 2022. p. 625–663.
  • Tang X-H, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol Mech Dis. 2011;6(1):345. doi: 10.1146/annurev-pathol-011110-130303
  • Amar K, Wei F, Chen J, et al. Effects of forces on chromatin. APL Bioeng. 2021;5(4). doi: 10.1063/5.0065302
  • Tajik A, Zhang Y, Wei F, et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater. 2016;15(12):1287. doi: 10.1038/nmat4729
  • Maharana S, Iyer KV, Jain N, et al. Chromosome intermingling—the physical basis of chromosome organization in differentiated cells. Nucleic Acids Res. 2016;44(11):5148. doi: 10.1093/nar/gkw131
  • Wang Y, Nagarajan M, Uhler C, et al. Orientation and repositioning of chromosomes correlate with cell geometry–dependent gene expression. MboC. 2017;28(14):1997. doi: 10.1091/mbc.e16-12-0825
  • Procter DJ, Furey C, Garza-Gongora AG, et al. Cytoplasmic control of intranuclear polarity by human cytomegalovirus. Nature. 2020;587(7832):109. doi: 10.1038/s41586-020-2714-x
  • Osborne CS, Chakalova L, Brown KE, et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004;36(10):1065. doi: 10.1038/ng1423
  • Noordermeer D, Leleu M, Splinter E, et al. The dynamic architecture of hox gene clusters. Science (80-). 2011;334(6053):222. doi: 10.1126/science.1207194
  • Jin F, Li Y, Dixon JR, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013;503(7475):290. doi: 10.1038/nature12644
  • Gialitakis M, Arampatzi P, Makatounakis T, et al. Gamma interferon-dependent transcriptional memory via relocalization of a gene locus to PML nuclear bodies. Mol Cell Biol. 2010;30(8):2046. doi: 10.1128/MCB.00906-09
  • Au W-H, Chan KCC, Wong AKC, et al. Attribute clustering for grouping, selection, and classification of gene expression data. IEEE/ACM Trans Comput Biol Bioinf. 2005;2(2):83. doi: 10.1109/TCBB.2005.17
  • Andreu I, Granero-Moya I, Chahare NR, et al. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat Cell Biol. 2022;24(6):896. doi: 10.1038/s41556-022-00927-7
  • Nastały P, Purushothaman D, Marchesi S, et al. Role of the nuclear membrane protein emerin in front-rear polarity of the nucleus. Nat Commun. 2020;11(1). doi: 10.1038/s41467-020-15910-9
  • Janin A, Bauer D, Ratti F, et al. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. Orphanet J Rare Dis. 2017;12(1). doi: 10.1186/s13023-017-0698-x
  • Berk JM, Tifft KE, Wilson KL. The nuclear envelope LEM-domain protein emerin. Nucleus. 2013;4(4):298. doi: 10.4161/nucl.25751
  • Bengtsson L, Wilson KL. Multiple and surprising new functions for emerin, a nuclear membrane protein. Curr Opin Cell Biol. 2004;16:73. doi: 10.1016/j.ceb.2003.11.012
  • Holaska JM, Wilson KL. Multiple roles for emerin: implications for emery-dreifuss muscular dystrophy. Anat Rec - Part A Discov Mol Cell Evol Biol. 2006;288(7):676. doi: 10.1002/ar.a.20334
  • Ho CY, Jaalouk DE, Vartiainen MK, et al. Lamin A/C and emerin regulate MKL1–SRF activity by modulating actin dynamics. Nature. 2013;497(7450):507. doi: 10.1038/nature12105
  • Östlund C, Bonne G, Schwartz K, et al. Properties of lamin a mutants found in emery-dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J Cell Sci. 2001;114(24):4435. doi: 10.1242/jcs.114.24.4435
  • Buchwalter A, Schulte R, Tsai H, et al. Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress. Elife. 2019;8:e49796. doi: 10.7554/eLife.49796
  • Walters AD, Bommakanti A, Cohen‐Fix O. Shaping the nucleus: factors and forces. J Cell Biochem. 2012;113(9):2813. doi: 10.1002/jcb.24178
  • Miroshnikova YA, Wickström SA. Mechanical forces in nuclear organization. Cold Spring Harb Perspect Biol. 2022;14(1):a039685. doi: 10.1101/cshperspect.a039685
  • Kalukula Y, Stephens AD, Lammerding J, et al. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol. 2022;23(9):583. doi: 10.1038/s41580-022-00480-z
  • Dong J, Feldmann G, Huang J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130(6):1120. doi: 10.1016/j.cell.2007.07.019
  • Huang J, Wu S, Barrera J, et al. The hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating yorkie, the drosophila homolog of YAP. Cell. 2005;122(3):421. doi: 10.1016/j.cell.2005.06.007
  • Lian I, Kim J, Okazawa H, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24(11):1106. doi: 10.1101/gad.1903310
  • Fu D, Lv X, Hua G, et al. YAP regulates cell proliferation, migration, and steroidogenesis in adult granulosa cell tumors. Endocr Relat Cancer. 2014;21(2):297. doi: 10.1530/ERC-13-0339
  • Cai H, Xu Y. The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal. 2013;11(1):31. doi: 10.1186/1478-811X-11-31
  • Matamales M, Bertran-Gonzalez J, Salomon L, et al. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLOS ONE. 2009;4(3):e4770. doi: 10.1371/journal.pone.0004770
  • Seirin-Lee S, Osakada F, Takeda J, et al. Role of dynamic nuclear deformation on genomic architecture reorganization. PLOS Comput Biol. 2019;15(9):e1007289. doi: 10.1371/journal.pcbi.1007289
  • Wagh K, Ishikawa M, Garcia DA, et al. Mechanical regulation of transcription: recent advances. Trends Cell Biol. 2021;31(6):457. doi: 10.1016/j.tcb.2021.02.008
  • Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18(12):728. doi: 10.1038/nrm.2017.108
  • Killaars AR, Walker CJ, Anseth KS. Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc Natl Acad Sci. 2020;117(35):21258. doi: 10.1073/pnas.2006765117
  • Olivares-Navarrete R, Lee EM, Smith K, et al. Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PLOS ONE. 2017;12(1):e0170312. doi: 10.1371/journal.pone.0170312
  • Guo W, Shan B, Klingsberg RC, et al. Abrogation of TGF-Β1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Cell Mol Physiol. 2009;297(5):L864. doi: 10.1152/ajplung.00128.2009
  • Cronshaw JM, Krutchinsky AN, Zhang W, et al. Proteomic analysis of the mammalian nuclear pore complex. J Cell Bio. 2002;158(5):915. doi: 10.1083/jcb.200206106
  • Beck M, Förster F, Ecke M, et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science (80-). 2004;306(5700):1387. doi: 10.1126/science.1104808
  • Feldherr CM, Akin D. The location of the transport gate in the nuclear pore complex. J Cell Sci. 1997;110:3065. doi: 10.1242/jcs.110.24.3065
  • Panté N, Kann M, Silver PA. Nuclear pore complex is able to transport macromolecules with diameters of~ 39 nm. Mol Biol Cell. 2002;13(2):425. doi: 10.1091/mbc.01-06-0308
  • Wente SR, Rout MP. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol. 2010;2(10):a000562. doi: 10.1101/cshperspect.a000562
  • Ghavami A, Van Der Giessen E, Onck PR. Energetics of transport through the nuclear pore complex. PLOS ONE. 2016;11(2):e0148876. doi: 10.1371/journal.pone.0148876
  • Schuller AP, Wojtynek M, Mankus D, et al. The cellular environment shapes the nuclear pore complex architecture. Nature. 2021;598(7882):667. doi: 10.1038/s41586-021-03985-3
  • Zimmerli CE, Allegretti M, Rantos V, et al. Nuclear pores dilate and constrict in cellulo. Science (80-). 2021;374(6573):eabd9776. doi: 10.1126/science.abd9776
  • Kabachinski G, Schwartz TU. The nuclear pore complex–structure and function at a glance. J Cell Sci. 2015;128(3):423. doi: 10.1242/jcs.083246
  • Strambio-De-Castillia C, Niepel M, Rout MP. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol. 2010;11(7):490. doi: 10.1038/nrm2928
  • Soniat M, Chook YM. Nuclear localization signals for four distinct Karyopherin-β nuclear import systems. Biochem J. 2015;468(3):353. doi: 10.1042/BJ20150368
  • Nakielny S, Siomi MC, Siomi H, et al. Transportin: nuclear transport receptor of a novel nuclear protein import pathway. Exp Cell Res. 1996;229(2):261. doi: 10.1006/excr.1996.0369
  • Stutz F, Rosbash M. Nuclear RNA export. Genes Dev. 1998;12(21):3303. doi: 10.1101/gad.12.21.3303
  • Stade K, Ford CS, Guthrie C, et al. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell. 1997;90(6):1041. doi: 10.1016/S0092-8674(00)80370-0
  • Cen L, Xing F, Xu L, et al. Potential role of gene regulator NFAT5 in the pathogenesis of diabetes mellitus. J Diabetes Res. 2020;2020:1–13. doi: 10.1155/2020/6927429
  • Moon S, Kim W, Kim S, et al. Phosphorylation by NLK inhibits YAP-14-3-3-interactions and induces its nuclear localization. EMBO Rep. 2017;18(1):61. doi: 10.15252/embr.201642683
  • Hong AW, Meng Z, Yuan H, et al. Osmotic stress‐induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep. 2017;18(1):72. doi: 10.15252/embr.201642681
  • Misra JR, Irvine KD. The hippo signaling network and its biological functions. Ann Rev Genet. 2018;52(1):65. doi: 10.1146/annurev-genet-120417-031621
  • Xie Q, Chen J, Feng H, et al. YAP/TEAD–mediated transcription controls cellular senescence. Cancer Research. 2013;73(12):3615. doi: 10.1158/0008-5472.CAN-12-3793
  • Li Y, Zhong Z, Xu C, et al. 3D micropattern force triggers YAP nuclear entry by transport across nuclear pores and modulates stem cells paracrine. Natl Sci Rev. 2023;10(8):nwad165. doi: 10.1093/nsr/nwad165
  • Bruyère C, Versaevel M, Mohammed D, et al. Actomyosin contractility scales with myoblast elongation and enhances differentiation through yap nuclear export. Sci Rep. 2019;9(1):15565. doi: 10.1038/s41598-019-52129-1
  • Killaars AR, Grim JC, Walker CJ, et al. Extended exposure to stiff microenvironments leads to persistent chromatin remodeling in human mesenchymal stem cells. Adv Sci. 2019;6(3):1801483. doi: 10.1002/advs.201801483
  • Stanton AE, Tong X, Lee S, et al. Biochemical ligand density regulates yes-associated protein translocation in stem cells through cytoskeletal tension and integrins. ACS Appl Mater Interfaces. 2019;11:8849. doi: 10.1021/acsami.8b21270
  • Enyedi B, Jelcic M, Niethammer P. The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell. 2016;165(5):1160. doi: 10.1016/j.cell.2016.04.016
  • Lomakin AJ, Cattin CJ, Cuvelier D, et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science (80-). 2020;370(6514):eaba2894. doi: 10.1126/science.aba2894
  • Nava MM, Miroshnikova YA, Biggs LC, et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell. 2020;181(4):800. doi: 10.1016/j.cell.2020.03.052
  • Venturini V, Pezzano F, Catala Castro F, et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science (80-). 2020;370(6514):eaba2644. doi: 10.1126/science.aba2644
  • Meng Z, Moroishi T, Guan K-L. Mechanisms of hippo pathway regulation. Genes Dev. 2016;30(1):1–17. doi: 10.1101/gad.274027.115