193
Views
5
CrossRef citations to date
0
Altmetric
Articles

A multi-scale percolation-based approach for the prediction of elasticity of early-age cement paste

, , , &
Pages s304-s320 | Published online: 10 Oct 2013

References

  • Aboudi, J. (1991). Mechanics of composite materials – A unified micromechanical approach. Amsterdam: Elsevier Science Publishers B.V.
  • Bentz, D. P., & Garboczi, E. J. (1991). Digitized simulation model for microstructural development. Ceramic Transactions, 16, 211–226.
  • Bentz, D. P. (2000). CEMHYD3D: A three-dimentional cement hydration and microstructure development modeling package, Version 2.0. Gaithersburg: National Institute of Standards and Technology.
  • Bentz, D. P. (2005). CEMHYD3D: A three-dimensional cement hydration and microstructure development modeling package, Version 3.0. Gaithersburg: National Institute of Standards and Technology.
  • Benveniste, Y. (1987). A new approach to the application of Mori-Tanaka’s theory in composite materials. Mechanics of Materials, 6, 147–157.
  • Bergstrom, S. G., & Byfors. J. (1980). Properties of concrete at early ages. Materials and Structures, 13, 265–274.
  • Bernard, O., Ulm, F.-J., & Lemarchand, E. (2003). A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cement and Concrete Research, 33, 1293–1309.
  • Bilaniuk, N., & Wang, G. (1993). Speed of sound in pure water as a function of temperature. Journal of the Acoustical Society of America, 93, 1609–1612.
  • Biot, M. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26, 182–185.
  • Boumiz, A., Vernet, C., & Cohen Tenoudji, F. (1996). Mechanical properties of cement paste and mortars at early ages. Advanced Cement Based Materials, 3, 94–106.
  • Constantinides, G., & Ulm, F. J. (2004). The effect of two types of C–S–H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research, 34, 67–80.
  • De Schutter, G., & Tearwe, L. (1996). Degree of hydration-based desciption of mechanical properties of early age concrete. Material and Structures, 29, 335–344.
  • De Jenlis, N. (2008). Etude des caractéristiques hydriques et mécaniques duciment dubatiment réacteur de la centrale nucléaire de Civaux [Study on hydraulic and mechanical characteristics of cement of reactor building of nuclear power center Civaux]. Mémoire de Master [Master Thesis], 2.
  • Dormieux, L., Kondo, D., & Ulm, F.-J. (2006). Microporomechanics. London: Wiley.
  • Eshelby, J. D. (1957). The determination of the elastic field in an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London A, 241, 376–396.
  • Garboczi, E. J., Bentz, D. P., & Martys, N. S. (1999). Digital images and computer modeling. Experimental Methods in the Physical Sciences, 35, 1–41.
  • Haecker, C. J., Garboczi, E. J., Bullard, J. W., et al. (2005). Modeling the linear elastic properties of portland cement paste. Cement and Concrete Research, 35, 1948–1960.
  • Helmuth, R., & Turk, D. (1966). Symposium on Structure of Portland Cement and Concrete, 135–144.
  • Hershey, A. V. (1954). The elasticity of an isotropic aggregate cubic crystals. Journal of Applied Mechanics (ASME), 21, 226–240.
  • Hill, R. (1965). A self-consitent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.
  • Jennings, H. M., & Tennis, P. D. (1994). Model for the developing microstructure in portland cement pastes. Journal of the American Ceramic Society, 7, 3161–3172.
  • Jennings, H. M. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 30, 101–116.
  • Kraub, M., & Hariri, K. (2006). Determination of initial degree of hydration for improvement of early-age properties of concrete using ultrasonic wave propagation. Cement & Concrete Composites, 28, 299–306.
  • LeRoy, R. (1996). Déformations instantanées et différées des bétons à hautes performances [Instaneous and delayed deformations of high performance concretes] (PhD thesis). Laboratoire Central des Ponts et Chaussées [Central Laboratory of Bridges and Roads].
  • Maekawa, K., Chaube, R., & Kishi, T. (1999). Modelling of concrete performance: Hydration, microstructure formation and mass transport. Taylor & Francis.
  • Maekawa, K., Ishide, T., & Kishi, T. (2009). Multi-scale modeling of structure concrete. Taylor & Francis.
  • Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgical, 21, 571–574.
  • Pichler, B., Hellmich, C., & Eberhardsteiner, J. (2009). Spherical and acicular representation of hydrates in a micromechanical model for cement paste: Prediction of early-age elasticity and strength. Acta Mechanica, 203, 137–162.
  • Pichler, B., & Hellmich, C. (2011). Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model. Cement and Concrete Research, 41, 467–476.
  • Pichler, B., & Scheiner, S. (2008). From micro-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: Micromechanical upscaling of stiffness and strength of hydrating shotcrete. Acta Geotechnica, 3, 273–294.
  • Powers, T. C. (1960). Physical properties of cement paste. Proceedings of the Fourth International Symposium. Washington, DC.
  • Princigallo, A., Lura, P., van Breugel, K., et al. (2003). Early development of properties in a cement paste: A numerical and experimental study original research article. Cement and Concrete Research, 33, 1013–1020.
  • Salenon, J. (2001). Handbook of continuum mechanics. Berlin: Springer.
  • Sanahuja, J., Dormieux, L., & Chanvillard, G. (2007). Modelling elasticity of a hydrating cement paste. Cement and Concrete Research, 37, 1427–1439.
  • Smilauer, V., & Bittnar, Z. (2006). Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste. Cement and Concrete Research, 36, 1708–1718.
  • Stefan, L., Benboudjema, F., Torrenti, J. M., & Bissonnette, B. (2010). Prediction of elastic properties of cement pastes at early ages. Computational Materials Science, 47, 775–784.
  • Sun, Z., Ye, G., & Shah, S. P. (2005). Microstructure and early-age properties of portland cement paste – Effects of connectivity of solid phase. ACI Material Journal, 102, 122–129.
  • Tennis, P. D., & Jennings, H. M. (2000). A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cement and Concrete Research, 30, 855–863.
  • Torrenti, J. M., & Benboudjema, F. (2005). Mechanical threshold of cementitious materials at early age. Materials and Structures, 38, 299–304.
  • Ulm, F.-J., & Constantinides, G. (2004). Is concrete a poromechanics material? A multiscale investigation of poroelastic properties. Material and Structure, 37, 43–58.
  • van Breugel, K. (1991). Simulation of hydration and formation of structure in hardening cement-based materials (PhD thesis). Delft University of Technology.
  • Velez, K., Maximilien, S., Damidot, D., Fantozzi, G., & Sorrentino, F. (2001). Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cement and Concrete Research, 31, 555–561.
  • Venkiteela, G., & Sun, Z. (2010). In situ observation of cement particle growth during setting. Cement & Concrete Composites, 32, 211–218.
  • Zaoui, A. (2002). Continuum micromechanics: Survey. Journal of Engineering Mechanics, 128, 808–816.
  • Zaoui, A. (1997). Structural morphology and constitutive behavior of microheterogeneous materials. In P. Suquet (Ed.), Continuum micromechanics (pp. 291–347). Vienna: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.