2,815
Views
138
CrossRef citations to date
0
Altmetric
Articles

Review on concrete nanotechnology

, &
Pages 455-485 | Received 21 May 2014, Accepted 14 Apr 2015, Published online: 02 Jun 2015

References

  • Agrios, A. G., & Pichat, P. (2005). State of the art and perspectives on materials and applications of photocatalysis over TiO2. Journal of Applied Electrochemistry, 35, 655–663.10.1007/s10800-005-1627-6
  • Allen, A. J., & Livingston, R. A. (1998). Relationship between differences in silica fume additives and fine-scale microstructural evolution in cement based materials. Advanced Cement-Based Materials, 8, 118–131.10.1016/S1065-7355(98)00015-7
  • Ali, A. H., Kandeel, A. M., & Ouda, A. S. (2013). Hydration characteristics of limestone filled cement pastes. Chemistry and Materials Research, 5, 68–73.
  • Assem, L., & Zhu, H. (2007). Chromium – Toxicological overview. Bedford: Institute of Environment and Health, Cranfield University.
  • Azhari, F., & Banthia, N. (2012). Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement and Concrete Composites, 34, 866–873.10.1016/j.cemconcomp.2012.04.007
  • Babak, F., Abolfaz, H., Alimorad, R., & Parviz, G. (2014). Preparation and mechanical properties of graphene oxide: Cement nanocomposites. The Scientific World Journal, 2014, 10. Article ID 276323.
  • Bahadori, H., & Hosseini, P. (2012). Reduction of cement consumption by the aid of silica nano-particles (Investigation on concrete properties). Journal of Civil Engineering and Management, 18, 416–425.10.3846/13923730.2012.698912
  • Barbhuiya, S., Mukherjee, S., & Nikraz, H. (2014). Effects of nano-Al2O3 on early-age microstructural properties of cement paste. Construction and Building Materials, 52, 189–193.10.1016/j.conbuildmat.2013.11.010
  • BASF Construction Solutions – Master X-Seed 100. (2014). Hardening accelerating admixture for concrete – EN 934-2:T7 ( Version 2). Cheshire: BASF +lc company.
  • Bawa, R., Bawa, S. R., Maebius, S. B., Flynn, T., & Wei, C. (2005). Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine Nanotechnology Biology and Medicine, 1, 150–158.10.1016/j.nano.2005.03.009
  • Behfarnia, K., & Salemi, N. (2013). The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Construction and Building Materials, 48, 580–584.10.1016/j.conbuildmat.2013.07.088
  • Behnood, A., & Ziari, H. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cement & Concrete Composites, 30, 106–112.
  • Bernard, O., Ulm, F.-J., & Germaine, J. T. (2003). Volume and deviator creep of calcium-leached cement-based materials. Cement and Concrete Research, 33, 1127–1136.10.1016/S0008-8846(03)00021-8
  • Berra, M., Carassiti, F., Mangialardi, T., Paolini, A. E., & Sebastiani, M. (2012). Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Construction and Building Materials, 35, 666–675.10.1016/j.conbuildmat.2012.04.132
  • Bolte, G. (2009). Innovative building materials- reduction of pollutants with TioCem. ZKG International Ene, 1, 63–70.
  • Camiletti, J., Soliman, A. M., & Nehdi, M. L. (2013). Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete. Magazine of Concrete Research, 65, 297–307.10.1680/macr.12.00015
  • Cárdenas, C., Tobón, J. I., García, C., & Vila, J. (2012). Functionalized building materials: Photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles. Construction and Building Materials, 36, 820–825.10.1016/j.conbuildmat.2012.06.017
  • Chaipanich, A., Nochaiya, T., Wongkeo, W., & Torkittikul, P. (2010). Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Materials Science and Engineering: A, 527, 1063–1067.10.1016/j.msea.2009.09.039
  • Chang, T.-P., Shih, J.-Y., Yang, K.-M., & Hsiao, T.-C. (2007). Material properties of portland cement paste with nano-montmorillonite. Journal of Materials Science, 42, 7478–7487.10.1007/s10853-006-1462-0
  • Chen, J., Kou, S., & Poon, C. (2012). Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites, 34, 642–649.10.1016/j.cemconcomp.2012.02.009
  • Chong, J. Z., Sutan, N. M., & Yakub, I. (2012). Characterization of early pozzolanic reaction of calcium hydroxide and calcium silicate hydrate for nanosilica modified cement paste. UNIMAS E-J. Civil Engineering, 4, 6–10.
  • Collins, F., Lambert, J., & Duan, W. H. (2012). The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cement and Concrete Composites, 34, 201–207.10.1016/j.cemconcomp.2011.09.013
  • Cwirzen, A., Habermehl-Cwirzen, K., Nasibulina, L. I., Shandakov, S. D., Nasibulin, A. G., Kauppinen, E. I., … Penttala, V. (2009). CHH cement composite. Nanotechnology in Construction, 3, 181–185.10.1007/978-3-642-00980-8
  • Dharap, P., Li, Z., Nagarajaiah, S., & Barrera, E. V. (2004). Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology, 15, 379–382.10.1088/0957-4484/15/3/026
  • Dhinakaran, G., Thilgavathi, S., & Venkataramana, J. (2012). Compressive strength and chloride resistance of metakaolin concrete. KSCE Journal of Civil Engineering, 16, 1209–1217.10.1007/s12205-012-1235-z
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2009). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240.
  • Duan. (2012). Retrieved from http://www.monash.edu.au/assets/pdf/industry/graphene-oxide-reinforced-concrete.pdf
  • Faria, B., Silvestre, N., & Canongia Lopes, J. N. (2011). Interaction diagrams for carbon nanotubes under combined shortening–twisting. Composites Science and Technology, 71, 1811–1818.10.1016/j.compscitech.2011.08.006
  • Farzadnia, N., Abang Ali, A. A., Demirboga, R., & Anwar, M. P. (2013). Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cement and Concrete Research, 48, 7–104.
  • Folli, A., Pade, C., Hansen, T. B., De Marco, T., & Macphee, D. E. (2012). TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cement and Concrete Research, 42, 539–548.10.1016/j.cemconres.2011.12.001
  • Fujishima, A., Hashimoto, K., & Watanabe, T. (1999). TiO2 photocatalysis: Fundamentals and application, (1st ed.). Tokyo: BKC.
  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.10.1038/238037a0
  • Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63, 515–582.10.1016/j.surfrep.2008.10.001
  • Garboczi, E. (2009). Concrete nanoscience and nanotechnology: Definitions and applications. Nanotecnhology in Construction, 3, 81–88.10.1007/978-3-642-00980-8
  • Gaucher, E. C., & Blanc, P. (2006). Cement/clay interactions – A review: Experiments, natural analogues, and modeling. Waste Management, 26, 776–788.10.1016/j.wasman.2006.01.027
  • Gencel, O., Brostow, W., Ozel, C., & Filiz, M. (2010). Concretes containing hematite for use as shielding barriers. Materials Science, 16, 249–256.
  • Grubek-Jaworska, H., Nejman, P., Czumińska, K., Przybyłowski, T., Huczko, A., Lange, H., … Chazan, R. (2006). Preliminary results on the pathogenic effects of intratracheal exposure to one-dimensional nanocarbons. Carbon, 44, 1057–1063.10.1016/j.carbon.2005.12.011
  • Gruber, K. A., Ramlochan, T., Boddy, A., Hooton, R. D., & Thomas, M. D. A. (2001). Increasing concrete durability with high-reactivity metakaolin. Cement and Concrete Composites, 23, 479–484.10.1016/S0958-9465(00)00097-4
  • Habermehl-Cwirzen, K., Penttala, V., & Cwirzen, A. (2008). Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Advances in Cement Research, 20, 65–73.10.1680/adcr.2008.20.2.65
  • Hakamy, A., Shaikh, F. U. A., & Low, I. M. (2014). Thermal and mechanical properties of hemp fabric-reinforced nanoclay–cement nanocomposites. Journal of Materials Science, 49, 1684–1694.10.1007/s10853-013-7853-0
  • Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: A historical overview and Future Prospects. Japanese Journal of Applied Physics, 44, 8269–8285.10.1143/JJAP.44.8269
  • Heikal, M., Abd El Aleem, S., & Morsi, W. M. (2013). Characteristics of blended cements containing nano-silica. HBRC Journal, 9, 243–255.10.1016/j.hbrcj.2013.09.001
  • Hillier, S. (2003). Clay mineralogy. In Kluwer Academic Publishers, G. V. Middleton, M. J. Church, M. Coniglio, L. A. Hardie, & F. J. Longstaffe (Eds.), Encyclopaedia of sediments and sedimentary rocks (pp. 139–142). Kluwer Academic Publishers: Dordrecht.
  • Hooton, R., Li, Y., Langan, B., & Ward, M. (1996). The strength and microstructure of high-strength paste containing silica fume. Cement, Concrete and Aggregates, 18, 112–117.10.1520/CCA10158J
  • Hou, P., Kawashima, S., Kong, D., Corr, D. J., Qian, J., & Shah, S. P. (2013). Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Composites Part B: Engineering, 45, 440–448.10.1016/j.compositesb.2012.05.056
  • Ibrahim, R. K., Hamid, R., & Taha, M. R. (2012). Fire resistance of high-volume fly ash mortars with nanosilica addition. Construction Building Materials, 36, 779–786.10.1016/j.conbuildmat.2012.05.028
  • Igarashi, S. I., Watanabe, A., & Kawamura, M. (2005). Evaluation of capillary pore size characteristics in high-strength concrete at early ages. Cement and Concrete Research, 35, 513–519.10.1016/j.cemconres.2004.06.036
  • Ingram, K. D., & Daugherty, K. E. (1991). A review of limestone additions to Portland cement and concrete. Cement and Concrete Composites, 13, 165–170.10.1016/0958-9465(91)90016-B
  • Jalal, M., Mansouri, E., Sharifipour, M., & Pouladkhan, A. R. (2012). Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Materials & Design, 34, 389–400.
  • Jo, B.-W., Kim, C.-H., Tae, G., & Park, J.-B. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21, 1351–1355.10.1016/j.conbuildmat.2005.12.020
  • Kagan, V. E., Tyurina, Y. Y., Tyurin, V. A., Konduru, N. V., Potapovich, A. I., & Osipov, A. N. (2006). Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicology Letters, 165, 88–100.10.1016/j.toxlet.2006.02.001
  • Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557–562.10.1016/j.conbuildmat.2013.02.066
  • Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010a). Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40, 1052–1059.10.1016/j.cemconres.2010.02.015
  • Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010b). Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement and Concrete Composites, 32, 110–115.10.1016/j.cemconcomp.2009.10.007
  • Krou, N. J., Batonneau-Gener, I., Belin, T., Mignard, S., Horgnies, M., & Dubois-Brugger, I. (2013). Mechanisms of NOx entrapment into hydrated cement paste containing activated carbon – Influences of the temperature and carbonation. Cement and Concrete Research, 53, 51–58.10.1016/j.cemconres.2013.06.006
  • Kuo, W.-T., Lin, K.-L., Chang, W.-C., & Luo, H.-L. (2006). Effects of nano-materials on properties of waterworks sludge ash cement paste. Journal of Industrial and Engineering Chemistry, 12, 702–709.
  • Kuo, W.-Y., Huang, J.-S., & Lin, C.-H. (2006a). Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cement and Concrete Research, 36, 886–895.10.1016/j.cemconres.2005.11.013
  • Kuo, W.-Y., Huang, J.-S., & Lin, C.-H. (2006b). Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cement and Concrete Research, 36, 886–895.10.1016/j.cemconres.2005.11.013
  • Lam, C.-W., James, J. T., McCluskey, R., Arepalli, S., & Hunter, R. L. (2006). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Critical Reviews in Toxicology, 36, 189–217.10.1080/10408440600570233
  • Laukaitis, A., Kerienė, J., Kligys, M., Mikulskis, D., & Lekūnaitė, L. (2012). Influence of mechanically treated carbon fibre additives on structure formation and properties of autoclaved aerated concrete. Construction and Building Materials, 26, 362–371.10.1016/j.conbuildmat.2011.06.035
  • Lehmann, C. P., & Fontana, P. (2009). Evolution of phases and micro structure in hydrothermally cured ultra-high performance concrete (UHPC). Nanotecnhology in Construction, 3, 287–293.10.1007/978-3-642-00980-8
  • Li, C.-Y., & Chou, T.-W. (2004). Strain and pressure sensing using single-walled carbon nanotubes. Nanotechnology, 15, 1493–1496.10.1088/0957-4484/15/11/021
  • Li, G. Y., Wang, P. M., & Zhao, X. (2005). Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon, 43, 1239–1245.10.1016/j.carbon.2004.12.017
  • Li, H., Xiao, H., Yuan, J., & Ou, J. (2004). Microstructure of cement mortar with nano-particles. Composites Part B: Engineering, 35, 185–189.10.1016/S1359-8368(03)00052-0
  • Li, H., Xiao, H., & Ou, J. (2004). A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research, 34, 435–438.10.1016/j.cemconres.2003.08.025
  • Li, H., Zhang, M., & Ou, J. (2006). Abrasion resistance of concrete containing nano-particles for pavement. Wear, 260, 1262–1266.10.1016/j.wear.2005.08.006
  • Li, W., Xiao, J., Sun, Z., Kawashima, S., & Shah, S. P. (2012). Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Construction and Building Materials, 35, 1045–1055.10.1016/j.conbuildmat.2012.06.022
  • Li, Z., Wang, H., He, S., Lu, Y., & Wang, M. (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Materials Letters, 60, 356–359.10.1016/j.matlet.2005.08.061
  • Lucas, S. S., Ferreira, V. M., & de Aguiar, J. L. B. (2013). Incorporation of titanium dioxide nanoparticles in mortars – Influence of microstructure in the hardened state properties and photocatalytic activity. Cement and Concrete Research, 43, 112–120.10.1016/j.cemconres.2012.09.007
  • Madandoust, R., Ranjbar, M. M., & Yasin Mousavi, S. (2011). An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Construction and Building Materials, 25, 3721–3731.10.1016/j.conbuildmat.2011.04.018
  • Martins, R. M., & Bombard, A. J. F. (2012). Rheology of fresh cement paste with superplasticizer and nanosilica admixtures studied by response surface methodology. Materials and Structures, 45, 905–921.10.1617/s11527-011-9807-9
  • Matejka, P. V., Kovár, P., Bábková, P., Pøikryl, P., Mamulová-Kutláková, K., & Èapková, P. (2009). Utilization of photoactive kaolinite/TiO2 composite in cement-based building materials. Nanotechnology in Construction, 3, 309–315.
  • Meng, T., Yu, Y., Qian, X., Zhan, S., & Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Construction and Building Materials, 29, 241–245.10.1016/j.conbuildmat.2011.10.047
  • Metaxa, Z. S., Konsta-Gdoutos,M. S., & Shah, S. P. (2009). Carbon nanotubes reinforced concrete. Nanotechnology of concrete: The next big thing is small. ACI special publications, 267, 11–20.
  • Metaxa, Z. S., Seo, J.-W. T., Konsta-Gdoutos, M. S., Hersam, M. C., & Shah, S. P. (2012). Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cement and Concrete Composites, 34, 612–617.10.1016/j.cemconcomp.2012.01.006
  • Morsy, M. S., El-Enein, S. A. A., & Hanna, G. B. (1997). Microstructure and hydration characteristics of artificial pozzolana-cement pastes containing burnt kaolinite clay. Cement and Concrete Research, 27, 1307–1312.10.1016/S0008-8846(97)00122-1
  • Morsy, M. S., Alsayed, S. H., & Aqel, M. (2010). Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar. International Journal of Environmental Engineering, 10, 21–25.
  • Morsy, M. S., Alsayed, S. H., & Aqel, M. (2011). Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Construction and Building Materials, 25, 145–149.10.1016/j.conbuildmat.2010.06.046
  • Musso, S., Tulliani, J.-M., Ferro, G., & Tagliaferro, A. (2009). Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Composites Science and Technology, 69, 1985–1990.10.1016/j.compscitech.2009.05.002
  • Nazari, A., & Riahi, S. (2010a). Assessment of the effects of Fe2O3 nanoparticles on water permeability, workability and setting time of concrete. Journal of Composites Materials, 45, 923–930.
  • Nazari, A., & Riahi, S. (2010b). Benefits of Fe2O3 nanoparticles in concrete mixing matrix. Journal of American Science, 6, 102–106.
  • Nazari, A., & Riahi, S. (2010c). Computer-aided prediction of physical and mechanical properties of high strength cementitious composites containing Cr2O3 nanoparticles. Nano, 5, 301–318.10.1142/S1793292010002219
  • Nazari, A., & Riahi, S. (2010d). Optimization mechanical properties of Cr2O3 nanoparticle binary blended cementitious composite. Journal of Composite Materials, 45, 943–948.
  • Nazari, A., & Riahi, S. (2011a). Abrasion resistance of concrete containing SiO2 and Al2O3 nanoparticles in different curing media. Energy Buildings, 43, 2939–2946.10.1016/j.enbuild.2011.07.022
  • Nazari, A., & Riahi, S. (2011b). The effects of TiO2 nanoparticles on properties of binary blended concrete. Journal of Composite Materials, 45, 1181–1188.10.1177/0021998310378910
  • Nazari, A., & Riahi, S. (2011c). TiO2 nanoparticles’ effects on properties of concrete using ground granulated blast furnace slag as binder. Science China Technological Sciences, 54, 3109–3118.10.1007/s11431-011-4421-1
  • Nazari, A., & Riahi, S. (2011d). The effects of Cr2O3 nanoparticles on strength assessments and water permeability of concrete in different curing media. Materials Science and Engineering: A, 528, 1173–1182.10.1016/j.msea.2010.09.099
  • Nazari, A., & Riahi, S. (2011e). Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles. Materials Science and Engineering: A, 528, 1183–1191.10.1016/j.msea.2010.09.098
  • Paiva, H., Velosa, A., Cachim, P., & Ferreira, V. M. (2012). Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cement and Concrete Research, 42, 607–612.10.1016/j.cemconres.2012.01.005
  • Maes, Pascal. ( 2014, March 11). Retrieved from http://www.engineeringcivil.com/cuore-concrete-nano-silica.html
  • Péra, J., Husson, S., & Guilhot, B. (1999). Influence of finely ground limestone on cement hydration. Cement and Concrete Composites, 21, 99–105.10.1016/S0958-9465(98)00020-1
  • Popov, V. N. (2004). Carbon nanotubes: Properties and application. Materials Science and Engineering: R: Reports, 43, 61–102.10.1016/j.mser.2003.10.001
  • PhotoPAQ – Demonstration of photocatalytic remediation processes on air quality – Progress Report. (2012, March). Lyon.
  • Qing, Y., Zenan, Z., Li, S., & Rongshen, C. (2006). A comparative study on the pozzolanic activity between nano-SiO2 and silica fume. Journal of Wuhan University of Technology-Mater Sci. Ed., 21, 153–157.
  • Qing, Y., Zenan, Z., Deyu, K., & Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials, 21, 539–545.10.1016/j.conbuildmat.2005.09.001
  • Quercia, G., & Brouwers, H. J. H. (2010). Application of nanosilica (nS) in concrete mixtures. 8th Fib PhD Symposium. Kongens Lyngby, Denmark.
  • Raki, L., Beaudoin, J., Alizadeh, R., Makar, J., & Sato, T. (2010). Cement and concrete nanoscience and nanotechnology. Materials, 3, 918–942.10.3390/ma3020918
  • Rashad, A. M. (2014). A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash. Construction and Building Materials, 52, 437–464.10.1016/j.conbuildmat.2013.10.101
  • Reilly, R. M. (2007). Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine. Journal of Nuclear Medicine, 48, 1039–1042.10.2967/jnumed.107.041723
  • Sáez de Ibarra, Y., Gaitero, J. J., Erkizia, E., & Campillo, I. (2006). Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. physica status solidi (a), 203, 1076–1081.10.1002/pssa.v203:6
  • Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete – A review. Construction and Building Materials, 24, 2060–2071.10.1016/j.conbuildmat.2010.03.014
  • Sanchez, F. L., & Zhang, C. I. (2009). Multi-scale performance and durability of carbon nanofiber/cement composites. Nanotechnology in Construction, 3, 345–351.
  • Sato, T., & Beaudoin, J. (2006). The effect of nano-sized CaCO3 addition on the hydration of OPC containing high volumes of ground granulated blast-furnace slag. 2nd International Symposium Advanced Concrete Science Engineering. Quebec City, QC.
  • Sato, T., & Beaudoin, J. (2010). Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Advanced Cement Research, 23, 1–29.
  • Senff, L., Hotza, D., Repette, W. L., Ferreira, V. M., & Labrincha, J. A. (2010). Rheological characterisation of cement pastes with nanosilica, silica fume and superplasticiser additions. Advances in Applied Ceramics: Structural, Functional & Bioceramics, 109, 213–218.
  • Senff, L., Tobaldi, D. M., Lucas, S., Hotza, D., Ferreira, V. M., & Labrincha, J. A. (2013). Formulation of mortars with nano-SiO2 and nano-TiO2 for degradation of pollutants in buildings. Composites Part B: Engineering, 44, 40–47.10.1016/j.compositesb.2012.07.022
  • Shah, S. P., Konsta-Gdoutos, M. S., Metaxa, Z. S., & Mondal, P (2009). Nanoscale modification of cementitious materials. Nanotechnology in Construction, 3, 125–130.
  • Shakhmenko, G., Juhnevica, I., & Korjakins, A. (2013). Influence of sol–gel nanosilica on hardening processes and physically-mechanical properties of cement paste. Procedia Engineering, 57, 1013–1021.10.1016/j.proeng.2013.04.128
  • Shamsai, A., Peroti, S., Rahmani, K., & Rahemi, L. (2012). Effect of water–cement ratio on abrasive strength, porosity and permeability of nano-silica concrete. World Applied Sciences Journal, 17, 929–933.
  • Siddique, R. (2011). Utilization of silica fume in concrete: Review of hardened properties. Resources, Conservation and Recycling, 55, 923–932.10.1016/j.resconrec.2011.06.012
  • Siddique, R., & Klaus, J. (2009). Influence of metakaolin on the properties of mortar and concrete: A review. Applied Clay Science, 43, 392–400.10.1016/j.clay.2008.11.007
  • Silvestre, N. (2012). On the accuracy of shell models for torsional buckling of carbon nanotubes. European Journal of Mechanics – A/Solids, 32, 103–108.10.1016/j.euromechsol.2011.09.005
  • Silvestre, N., Faria, B., & Canongia Lopes, J. N. (2012). A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes. Composite Structures, 94, 1352–1358.10.1016/j.compstruct.2011.10.029
  • Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial role of nanosilica in cement based materials – A review. Construction and Building Materials, 47, 1069–1077.10.1016/j.conbuildmat.2013.05.052
  • Sinnott, S. B., & Andrews, R. (2001). Carbon nanotubes: Synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 26, 145–249.10.1080/20014091104189
  • Soliman, E. M., Kandil, U. F., & Taha, M. (2012). The significance of carbon nanotubes on styrene butadiene rubber (SBR) and SBR modified mortar. Materials and Structures, 45, 803–816.10.1617/s11527-011-9799-5
  • Som, C., Wick, P., Krug, H., & Nowack, B. (2011). Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environment International, 37, 1131–1142.10.1016/j.envint.2011.02.013
  • Stengel, T. (2009). Effect of surface roughness on the steel fibre bonding in ultra high performance concrete (UHPC). Nanotecnhology in Construction, 3, 371–376.10.1007/978-3-642-00980-8
  • Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39, 2804–2814.10.1007/s11661-008-9603-5
  • Wang, X., Zhi, L. J., & Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.10.1021/nl072838r
  • Xu, Q. L., Meng, T., & Huang, M. Z. (2011). Effects of nano-CaCO3 on the compressive strength and microstructure of high strength concrete in different curing temperature. Applied Mechanics and Materials, 121–126, 126–131.
  • Yazdanbakhsh, A., & Grasley, Z. (2012). The theoretical maximum achievable dispersion of nanoinclusions in cement paste. Cement and Concrete Research, 42, 798–804.10.1016/j.cemconres.2012.03.001
  • Zhu, W, Bartos, P. J. M., & Porro, A. (2004). Application of nanotechnology in construction. Materials and Structures, 37, 649–658.10.1007/BF02483294
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 3906–3924.10.1002/adma.201001068

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.