233
Views
8
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation and constitutive modelling of creep-damage behaviours in monzogranite

, , , &
Pages s54-s69 | Received 15 Jan 2015, Accepted 15 May 2015, Published online: 25 Sep 2015

References

  • Baud, P., & Meredith, P. G. (1997). Damage accumulation during triaxial creep of darley dale sandstone from pore volumometry and acoustic emission. International Journal of Rock Mechanics and Mining Sciences, 34, 24.e1–24.e10.
  • Brantut, N., Heap, M. J., Meredith P. G., & Baud. P. (2013). Time-dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 52, 17–43.10.1016/j.jsg.2013.03.007
  • Challamel, N. L., Lanos, C., & Casandjian, C. (2005). Creep damage modelling for quasi-brittle materials. European Journal of Mechanics – A/Solids, 24, 593–613.10.1016/j.euromechsol.2005.05.003
  • Engelder, T. (1984). The time-dependent strain relaxation of Algerie granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 21, 63–73.
  • Golshani, A., Oda, M., Okui, Y., Takemura, T., & Munkhtogoo, E. (2007). Numerical simulation of the excavation damaged zone around an opening in brittle rock. International Journal of Rock Mechanics and Mining Sciences, 44, 835–845.10.1016/j.ijrmms.2006.12.005
  • Heap, M. J., Baud, P., Meredith, P. G., Vinciguerra, S., Bell, A. F., & Main, I. G. (2011). Brittle creep in basalt and its application to time-dependent volcano deformation. Earth and Planetary Science Letters, 307, 71–82.10.1016/j.epsl.2011.04.035
  • Hoxha, D., Giraud, A., & Homand, F. (2005). Modelling long-term behaviour of a natural gypsum rock. Mechanics of Materials, 37, 1223–1241.10.1016/j.mechmat.2005.06.002
  • Hu, D. W., Zhu, Q. Z., Zhou, H., & Shao, J. F. (2010). A discrete approach for anisotropic plasticity and damage in semi-brittle rocks. Computers and Geotechnics, 37, 658–666.10.1016/j.compgeo.2010.04.004
  • Kanaori, Y., Yairi, K., & Ishida, T. (1991). Grain boundary microcracking of granitic rocks from the northeastern region of the Atotsugawa fault, central Japan: SEM backscattered electron images. Engineering Geology, 30, 221–235.10.1016/0013-7952(91)90044-L
  • Kranz, R. L. (1980). The effects of confining pressure and stress difference on static fatigue of granite. Journal of Geophysical Research: Solid Earth, 85, 1854–1866.10.1029/JB085iB04p01854
  • Lin, Q. X., Liu, Y. M., Tham, L. G., Tang, C. A., Lee, P. K. K., & Wang, J. (2009). Time-dependent strength degradation of granite. International Journal of Rock Mechanics and Mining Sciences, 46, 1103–1114.10.1016/j.ijrmms.2009.07.005
  • Li, Y., & Xia, C. (2000). Time-dependent tests on intact rocks in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 37, 467–475.10.1016/S1365-1609(99)00073-8
  • Lu, Y., Elsworth, D., & Wang, L. (2014). A dual-scale approach to model time-dependent deformation, creep and fracturing of brittle rocks. Computers and Geotechnics, 60, 61–76.10.1016/j.compgeo.2014.04.001
  • Mazars, J. (1986). A description of micro- and macroscale damage of concrete structures. Engineering Fracture Mechanics, 25, 729–737.10.1016/j.compgeo.2014.04.001
  • Molladavoodi, H., & Mortazavi, A. (2011). A damage-based numerical analysis of brittle rocks failure mechanism. Finite Elements in Analysis and Design, 47, 991–1003.10.1016/j.finel.2011.03.015
  • Perzyna, P. (1966). Fundamental problems in viscoplasticity. Advances in applied mechanics, 9, 243–377.
  • Seo, Y. S., Jeong, G. C., Kim, J. S., & Ichikawa, Y. (2002). Microscopic observation and contact stress analysis of granite under compression. Engineering Geology, 63, 259–275.10.1016/S0013-7952(01)00086-2
  • Shao, J. F., Chau, K. T., & Feng, X. T. (2006). Modeling of anisotropic damage and creep deformation in brittle rocks. International Journal of Rock Mechanics and Mining Sciences, 43, 582–592.10.1016/j.ijrmms.2005.10.004
  • Shin, K., Okubo, S., Fukui, K., & Hashiba, K. (2005). Variation in strength and creep life of six Japanese rocks. International Journal of Rock Mechanics and Mining Sciences, 42, 251–260.10.1016/j.ijrmms.2004.08.009
  • Sprunt, E. S., & Brace, W. F. (1974). Direct observation of microcavities in crystalline rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11, 139–150.
  • Sun, J., & Hu, Y. Y. (1997). Time-dependent effects on the tensile strength of saturated granite at Three Gorges Project in China. International Journal of Rock Mechanics and Mining Sciences, 34, 306.e1–306.e13.
  • Tapponnier, P., & Brace, W. F. (1976). Development of stress-induced microcracks in Westerly Granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13, 103–112.
  • Tsai, L. S., Hsieh, Y. M., Weng, M. C., Huang, T. H., & Jeng, F. S. (2008). Time-dependent deformation behaviors of weak sandstones. International Journal of Rock Mechanics and Mining Sciences, 45, 144–154.10.1016/j.ijrmms.2007.04.008
  • Wang, W., Shao, J. F., Zhu, Q. Z., & Xu, W. Y. (2015). A discrete viscoplastic damage model for time-dependent behaviour of quasi-brittle rocks. International Journal of Damage Mechanics, 24, 21–40.10.1177/1056789514520801
  • Yamasaki, S., Zwingmann, H., Yamada, K., Tagami, T., & Umeda, K. (2013). Constraining the timing of brittle deformation and faulting in the Toki granite, central Japan. Chemical Geology, 351, 168–174.10.1016/j.chemgeo.2013.05.005
  • Yang, D. S., Chen, L. F., Yang, S. Q., Chen, W. Z., & Wu, G. J. (2014). Experimental investigation of the creep and damage behavior of Linyi red sandstone. International Journal of Rock Mechanics and Mining Sciences, 72, 164–172.10.1016/j.ijrmms.2014.09.001
  • Yang, S., & Jiang, Y. (2010). Triaxial mechanical creep behavior of sandstone. Mining Science and Technology (China), 20, 339–349.10.1016/S1674-5264(09)60206-4
  • Zhou, H., Jia, Y., & Shao, J. F. (2008). A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks. International Journal of Rock Mechanics and Mining Sciences, 45, 1237–1251.10.1016/j.ijrmms.2008.01.004
  • Zhu, Q. Z., Shao, J., & Kondo, D. (2008). A discrete thermodynamic approach for modeling anisotropic coupled plasticity-damage behavior in geomaterials. Comptes Rendus Mécanique, 336, 376–383.10.1016/j.crme.2008.01.006
  • Zhu, Q. Z., Zhou, C. B., Shao, J. F., & Kondo, D. (2010). A discrete thermodynamic approach for anisotropic plastic–damage modeling of cohesive-frictional geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 34, 1250–1270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.