368
Views
16
CrossRef citations to date
0
Altmetric
Articles

Cost efficiency and resistance to chemical attack of a fly ash geopolymeric mortar versus epoxy resin and acrylic paint coatings

, , , &
Pages 555-571 | Received 04 Jun 2015, Accepted 16 Dec 2015, Published online: 20 Jan 2016

References

  • Aguiar, J. B., Camões, A., & Moreira, P. M. (2008). Coatings for concrete protection against aggressive environments. Journal of Advanced Concrete Technology, 6, 243–250.10.3151/jact.6.243
  • Allahverdi A., & Škvára F. (2001a). Nitric acid attack on hardened paste of geopolymeric cements, Part 1. Ceramics –Silikáty, 45, 81-88.
  • Allahverdi A., & Škvára F. (2001b). Nitric acid attack on hardened paste of geopolymeric cements, Part 2, Ceramics –Silikáty, 45, 143–149
  • Almusallam, A., Khan, F., Dulaijan, S., & Al-Amoudi, O. (2003). Effectiveness of surface coatings in improving concrete durability. Cement & Concrete Composites, 25, 473–481. doi:10.1016/S0958-9465(02)00087-2
  • Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2002). Sulfate attack on alkali-activated slag concrete. Cement and Concrete Research, 32, 211–216. doi:10.1016/j.conbuildmat.2007.07.015
  • Berndt, M. (2011). Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria. Construction and Building Materials, 25, 3893–3902. doi:10.1016/j.conbuildmat.2011.04.014
  • Bijen, J. (2000) Durability of engineering structures. Design, repair and maintenance. Cambridge: Woodhead.
  • Brenna, A., Bolzoni, F., Beretta, S., & Ormellese, M. (2013). Long-term chloride-induced corrosion monitoring of reinforced concrete coated with commercial polymer-modified mortar and polymeric coatings. Construction and Building Materials, 48, 734–744. doi:10.1016/j.conbuildmat.2013.07.099
  • COM. (2014). 398 of July 2. Retrieved from http://ec.europa.eu/transparency/regdoc/rep/1/2014/EN/1-2014-398-EN-F1-1.Pdf
  • Davidovits, J., Comrie, D. C., Paterson, J. H., & Ritcey, D. J. (1990). Geopolymeric concretes for environmental protection. ACI Concrete International, 12, 30–40.
  • Davidovits, J. (1979). Synthesis of new high temperature geo-polymers for reinforced plastics/composites. SPE PACTEC 79 Society of Plastic Engineers, Brookfield Center, pp. 151–154.
  • ERMCO – European ready-mixed concrete industry statistics 2013. (2014). Retrieved September 10, 2015 from http://www.ermco.eu/publications/statistics/.
  • Fernandez-Jimenez, A., García-Lodeiro, I., & Palomo, A. (2007). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42, 3055–3065. doi:10.1007/s10853-006-0584-8
  • Ferreira R.. (2000). Evaluation of durability test ( Master Thesis). University of Minho, 246 p., Guimaraes, Portugal.
  • Glasser, F., Marchand, J., & Samson, E. (2008). Durability of concrete – Degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, 38, 226–246. doi:10.1016/j.cemconres.2007.09.015
  • Granizo, M. L., Blanco-Varela, M. T., & Martínez-Ramírez, S. (2007). Alkali activation of metakaolins: Parameters affecting mechanical, structural and microstructural properties. Journal of Materials Science, 42, 2934–2943. doi:10.1007/s10853-006-0565-y
  • Lee, W. K. W., & van Deventer, J. S. J. (2002). The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cement and Concrete Research, 32, 577–584. doi:10.1016/S0008-8846(01)00724-4
  • Medeiros, M., & Helene, P. (2008). Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Materials and Structures, 41, 59–71. doi:10.1617/s11527-006-9218-5
  • Moreira, P. (2006). Using polymeric coatings to improve the durability of concrete exposed to aggressive media ( Master thesis). University of Minho.
  • Pacheco-Torgal, F., Labrincha, J. A., Leonelli, C., Palomo, A., Chindaprasirt, P. (2014). Handbook of alkali-activated cements, mortars and concretes (1st ed.) (pp. 75–109). Cambridge: WoodHead Publishing Limited – Elsevier Science and Technology.
  • Pacheco-Torgal, F., Abdollahnejad, Z., Miraldo, S., Baklouti, S., & Ding, Y. (2012). An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Construction and Building Materials, 36, 1053–1058. doi:10.1016/j.conbuildmat.2012.07.003
  • Pacheco-Torgal, F., Jalali, S., Fucic, A. (2012) Toxicity of building materials. Cambridge: Woodhead. 480 p.10.1533/9780857096357
  • Pacheco Torgal, F., & Jalali, S. (2011). Toxicity of building materials. A key issue in sustainable construction. International Journal of Sustainable Engineering, Taylor & Francis, 4, 281–287. doi:10.1080/19397038.2011.569583
  • Pacheco-Torgal, F., & Jalali, S. (2009). Sulphuric acid resistance of plain, polymer modified, and fly ash cement concretes. Construction and Building Materials, 23, 3485–3491. doi:10.1016/j.conbuildmat.2009.08.001
  • Pacheco-Torgal, F., Gomes, J. P., & Jalali, S. (2008a). Alkali-activated binders: A review. Construction and Building Materials, 22, 1305–1314. doi:10.1016/j.conbuildmat.2007.10.015
  • Pacheco-Torgal, F., Gomes, J. P., & Jalali, S. (2008b). Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment. Construction and Building Materials, 22, 154–161. doi:10.1016/j.conbuildmat.2006.10.005
  • Pacheco-Torgal, F., Gomes, J. P., & Jalali, S. (2008c). Investigations on mix design of tungsten mine waste geopolymeric binders. Construction and Building Materials, 22, 1939–1949.10.1016/j.conbuildmat.2007.07.015
  • Pacheco-Torgal, F., & Castro-Gomes, J. P. (2006). Influence of physical and geometrical properties of granite and limestone aggregates on the durability of a C20/25 strength class concrete. Construction and Building Materials, 20, 1079–1088. doi:10.1016/j.conbuildmat.2005.01.063
  • Papakonstantinou, C. G., Balaguru, P. N. (2007). Geopolymer protective coatings for concrete. International SAMPE Symposium and Exhibition (Proceedings), 52.
  • Provis, J. L., & Van Deventer, J. S. J. (Eds.). (2009). Geopolymers: Structure, processing, properties and industrial applications. Cambridge: Woodhead.
  • Provis, J. (2014). Geopolymers and other alkali activated materials: Why, how, and what ? Materials and Structures, 47, 11–25.10.1617/s11527-013-0211-5
  • Puertas, F., Torres-Carrasco, M., Alonso, M. (2014). Reuse of urban and industrial waste glass as novel activator for alkali-activated slag cement pastes: A case study. In Pacheco-Torgal, F., Labrincha, J. A., Leonelli, C., Palomo, A., & Chindaprasirt, P. (Eds.), Handbook of alkali-activated cements, mortars and concretes (1st ed.) (pp. 75–109). Cambridge: WoodHead Publishing Limited – Elsevier Science.
  • Roy, D. M., Arjunan, P., & Silsbee, M. R. (2001). Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement and Concrete Research, 31, 1809–1813. doi:10.1016/S0008-8846(01)00548-8
  • Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90, 2118–2124.10.1016/j.fuel.2011.01.018
  • Van Deventer, J. S. J., Provis, J., & Duxson, P. (2012). Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 29, 89–104. doi:10.1016/j.mineng.2011.09.009
  • Yip, C., Lukey, G., Deventer, S. J. S. (2005). The coexistence of geopolymeric gel and calcium silicate hydrate gel at the early stage of alkaline activation. Cement and Concrete Research, 35, 1688–1697. doi:10.1016/j.cemconres.2004.10.042
  • Zivica, V., Bazja, A. (2001). Acid attack of cement based materials – A review. Part 1, Principle of acid attack. Cement and Concrete Research, 15, 331-340. Retrieved from http://www.ceramics-silikaty.cz/2005/pdf/2005_04_225.pdf
  • Zhang, Z., Yao, X., & Zhu, H. (2010a). Potential applications of geopolymers as protection coatings for marine concrete I. Basic properties. Applied Clay Science, 49, 1–6. doi:10.1016/j.clay.2010.01.014
  • Zhang, Z., Yao, X., & Zhu, H. (2010b). Potential application of geopolymers as protection coatings for marine concreteII. Microstructure and anticorrosion mechanism. Applied Clay Science, 49, 7–12. doi:10.1016/j.clay.2010.04.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.