261
Views
20
CrossRef citations to date
0
Altmetric
Articles

Is alfa a vegetal fiber suitable for making green reinforced structure concrete?

, , , &
Pages 686-706 | Received 20 Oct 2015, Accepted 20 Jul 2016, Published online: 07 Aug 2016

References

  • Aamr-Daya, E., Langlet, T., Benazzouk, A., & Quéneudec, M. (2008). Feasibility study of lightweight cement composite containing flax by-product particles: Physico-mechanical properties. Cement and Concrete Composites, 30, 957–963. doi:10.1016/j.cemconcomp.2008.06.002
  • AFPC-AFREM (1997). Recommended methods for measuring of durability parameters. Proceedings of the technical AFCP/AFREM days on concrete durability, Toulouse (pp.125–134). 11 and 12 December.
  • Aggarwal, L. K. (1995). Bagasse-reinforced Cement Composites. Cement and Concrete Composites, 17, 107–112. doi:10.1016/0958-9465(95)00008-Z
  • Alduaij, J., Alshaleh, K., Haque, M. N., & Ellaithy, K. (1999). Lightweight concrete in hot coastal areas. Cement and Concrete Composites, 21, 453–458. doi:10.1016/S0958-9465(99)00035-9
  • Ali, M. A., & Singh, B. (1975). The effect of porosity on the properties of glass fibre-reinforced gypsum plaster. Journal of Materials Science, 10, 1920–1928. doi:10.1007/BF00754481
  • Aziz, M. A., Paramasivam, P., & Lee, S. L. (1981). Prospects for natural fibre reinforced concretes in construction. International Journal of Cement Composites and Lightweight Concrete, 3, 123–132. doi:10.1016/0262-5075(81)90006-3
  • Badr, A., Ashour, A. F., & Platten, A. K. (2006). Statistical variations in impact resistance of polypropylene fibre-reinforced concrete. International Journal of Impact Engineering, 32, 1907–1920. doi:10.1016/j.ijimpeng.2005.05.003
  • Bahloul O. (2006). Propriétés mécaniques, physiques et durabilité des mortiers à base de fibers cellulosiques (cas de l’alfa) [Mechanical, physical properties and durability of mortars based on cellulose fibers (case alfa)] ( Magiter Thesis). ENTP, Algiers University, Algiers.
  • Bahloul O, Bourzam, A., & Bahloul, A. (2009). Utilisation des fibers végétales dans le renforcement de mortiers de ciment (Cas de l’alfa). SBEIDCO - 1st International Conference on Sustainable Built Environment Infrastructures in Developing Countries, ENSET Oran, Algeria, 12–14 October 2009.
  • Baroghel-Bouny, V., Mounanga, P., Khelidj, A., Loukili, A., & Rafaï, N. (2006). Autogenous deformations of cement pastes: Part II. W/C effects, micro-macro correlations, and threshold values. Cement and Concrete Research, 36, 123–136. doi:10.1016/j.cemconres.2004.10.020
  • Barr, B., Hoseinian, S. B., & Beygi, M. A. (2003). Shrinkage of concrete stored in natural environments. Cement and Concrete Composites, 25, 19–29. doi:10.1016/S0958-9465(01)00044-0
  • Bentur, A., & Mindess, S. (2006). Fiber Reinforced Cementitious Composites (2nd ed., 624 pp). Modern Concrete Technology. Abingdon: CRC Press, Taylor & Francis.
  • Bordelon, A. C., & Roesler, J. R. (2014). Spatial distribution of synthetic fibers in concrete with X-ray computed tomography. Cement and Concrete Composites, 53, 35–43. doi:10.1016/j.cemconcomp.2014.04.007
  • Charlet, K., Baley, C., Morvan, C., Jernot, J. P., Gomina, M., & Bréard, J. (2007). Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Composites Part A: Applied Science and Manufacturing, 38, 1912–1921. doi:10.1016/j.compositesa.2007.03.006
  • Chen, B., & Liu, J. (2004). Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cement and Concrete Research, 34, 1259–1263. doi:10.1016/j.cemconres.2003.12.014
  • Chi, J. M., Huang, R., Yang, C. C., & Chang, J. J. (2003). Effect of aggregate properties on the strength and stiffness of lightweight concrete. Cement and Concrete Composites, 25, 197–205. doi:10.1016/S0958-9465(02)00020-3
  • Dallel M. (2012). Evaluation du potentiel textile des fibers d’Alfa - (Stipa Tenacissima L.) : Caractérisation physico-chimique de la fiber au fil [Evaluation of potential textile fiber Alfa - (Stipa tenacissima): Physico-chemical characterization of the fiber over] ( PhD Thesis). Haute Alsace University, Mulhouse.
  • Ding, Q. P. D., Tian, Y., Wang, F., Zhang, F., & Hu, S. (2005). Autogenous shrinkage of high strength lightweight aggregate concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed., 20, 123–125. doi:10.1007/BF02841302
  • Ding, Y., Zhang, C., Cao, M., Zhang, Y., & Azevedo, C. (2016). Influence of different fibers on the change of pore pressure of self-consolidating concrete exposed to fire. Construction and Building Materials, 113, 456–469. doi:10.1016/j.conbuildmat.2016.03.070
  • Grasley, Z. C., & Leung, C. K. (2011). Desiccation shrinkage of cementitious materials as an aging poroviscoelastic response. Cement and Concrete Research, 41, 77–89.10.1016/j.cemconres.2010.09.008
  • Grzybowski, M., & Shah, S. P. (1990). Shrinkage cracking of fiber reinforced concrete. Materials Journal, 87, 138–148.
  • Hameed, R., Turatsinze, A., Duprat, F., & Sellier, A. (2009). Metallic fiber reinforced concrete: Effect of fiber aspect radio on the flexural properties. Journal of Engineering and Applied Sciences, 4, 67–72.
  • Hamza, S., Saad, H., Charrier, B., Ayed, N., & Charrier - El Bouhtoury, F. (2013). Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products, 49, 357–365. doi:10.1016/j.indcrop.2013.04.052
  • Hannant, D. J. (1978). Fiber cements and fiber concretes (219 pp). New York, NY: Wiley-interscience.
  • Hossain, K. M. A. (2004). Properties of volcanic pumice based cement and lightweight concrete. Cement and Concrete Research, 34, 283–291. doi:10.1016/j.cemconres.2003.08.004
  • Kayali, O., Haque, M. N., & Zhu, B. (1999). Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cement and Concrete Research, 29, 1835–1840. doi:10.1016/S0008-8846(99)00179-9
  • Kakooei, S., Akil, H Md, Jamshidi, M., & Rouhi, J. (2012). The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction and Building Materials, 27, 73–77. doi:10.1016/j.conbuildmat.2011.08.015
  • Keyvani, S. A., & Saeki, N. (1997). Behavior of fiber concrete composites using recycled steel shavings. Journal of Solid Waste Technology and Management, 24(1), 1–8.
  • Kohno, K., Okamoto, T., Isikawa, Y., Sibata, T., & Mori, H. (1999). Effects of artificial lightweight aggregate on autogenous shrinkage of concrete. Cement and Concrete Research, 29, 611–614. doi:10.1016/S0008-8846(98)00202-6
  • Kriker A. (2005). Caractérisation des fibers de palmier dattier et propriétés des bétons et mortiers renforcés par des fibers en climat chaud et sec [Characterization of date palm fibers and properties of concrete and mortar reinforced with fibers in hot and dry climate] ( PhD Thesis). Ecole nationale Polytechnique of Algiers, Algiers.
  • Krobba, B., Bouhicha, M., Zaidi, A., & Lakhdari, M. F. (2014). Formulation of a repair mortar based on dune sand and natural microfibers. In Grantham, Michael Grantham, P A Muhammed Basheer, Bryan Magee (Eds.), Technology & Engineering, Concrete Solution. (pp 91–96). London: Taylor & Francis Group. ISBN 978-1-138-02708-4.
  • Lange-Kornbak, D., & Karihaloo, B. L. (1997). Tension softening of fibre-reinforced cementitious composites. Cement and Concrete Composites, 19, 315–328. doi:10.1016/S0958-9465(97)00027-9
  • Lewis, G., & Premalal, M. (1979). Natural vegetable fibres as reinforcement in cement sheets. Magazine of Concrete Research, 31, 104–108. doi:10.1680/macr.1979.31.107.104
  • Li, V. C., Wang, Y., & Backer, S. (1991). A micromechanical model of tension softening and bridging toughening of short random fiber reinforced brittle matrix composites. Journal of the Mechanics and Physics of Solids, 39, 607–625. doi:10.1016/0022-5096(91)90043-N
  • Li, V. C., Kanda, T., & Lin, Z. C. (1997). Influence of fiber/matrix interface properties on complementary energy and composite damage tolerance. Key Engineering Materials, 145–149, 465–472. doi:10.4028/www.scientific.net/KEM.145-149.465
  • Lura, P., & Terrasi, G. P. (2014). Reduction of fire spalling in high-performance concrete by means of superabsorbent polymers and polypropylene fibers. Cement and Concrete Composites, 49, 36–42. doi:10.1016/j.cemconcomp.2014.02.001
  • Maghchiche, A., Haouam, A., & Immirzt, B. (2013). Extraction and characterization of Algerian alfa grass short fibers (Stipa tenacissima). Chemistry & Chemical Technology, 7, 339–344.
  • Morlier, P., & Khenfer, M. M. (1991). Effet de la longueur des fibres sur les propriétés mécaniques des ciments renforcés de fibres cellulosiques [Effect of fiber length on the mechanical properties of reinforced cellulosic fiber cement]. Materials and Structures, 24, 185–190. doi:10.1007/BF02472984
  • Mounanga, P., Baroghel-Bouny, V., Loukili, A., & Khelidj, A. (2006). Autogenous deformations of cement pastes: Part I. Temperature effects at early age and micro–macro correlations. Cement and Concrete Research, 36, 110–122. doi:10.1016/j.cemconres.2004.10.019
  • Neville, A. M. (1997). Properties of concrete (4th ed.). Essex: Addison Wesley Longman.
  • NF EN 12350-2 Avril. (2012). Essais pour béton frais - Partie 2 : essai d'affaissement [Testing fresh concrete - Part 2: Slump test], in french.
  • NF EN 197-1 (2000). Cement - part 1: Compositions. Specifications and conformity criteria for common cement. Brussels: European Committee for Standardization.
  • NF P 18-414. (1993). Essais des Bétons – Essais Non Destructifs. Mesure de la Fréquence de Résonance Fondamentale [Testing of concrete - non-destructive testing - Measurement of the fundamental resonance frequency]. French: AFNOR.
  • Oksman, K. (2000). Mechanical properties of natural fiber mat reinforced thermoplastic. Applied Composite Materials, 7(5–6), 403–414. doi:10.1023/A:1026546426764
  • Paiva, M. C., Ammar, I., Campos, A. R., Cheikh, R. B., & Cunha, A. M. (2007). Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 67, 1132–1138. doi:10.1016/j.compscitech.2006.05.019
  • Ramaswamy, H. S., Ahuja, B. M., & Krishnamoorthy, S. (1983). Behaviour of concrete reinforced with jute, coir and bamboo fibres. International Journal of Cement Composites and Lightweight Concrete, 5, 3–13. doi:10.1016/0262-5075(83)90044-1
  • SaradhiBabu, D., Ganesh, Babu K., & Wee, T. H. (2006). Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete. Cement and Concrete Composites , 28, 520–527. doi:10.1016/j.cemconcomp.2006.02.018
  • Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management, 28, 1835–1852. doi:10.1016/j.wasman.2007.09.011
  • Söylev, T. A., & Özturan, T. (2014). Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Construction and Building Materials, 73, 67–75. doi:10.1016/j.conbuildmat.2014.09.058
  • Swamy, R. N., & Mangat, P. S. (1974). Influence of fiber geometry on the properties of steel fiber reinforced concrete. Cement and Concrete Research, 4, 551–565. doi:10.1016/0008-8846(74)90110-0
  • Trache, D., Donnot, A., Khimeche, K., Benelmir, R., & Brosse, N. (2014). Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrate Polymers, 104, 223–230. doi:10.1016/j.carbpol.2014.01.058
  • Wafa, F. F. (1990). Properties and applications of fiber reinforced concrete. Journal of King Abdulaziz University-Engineering Sciences, 2, 49–63.
  • Wang, Y., Wu, H. C., & Li, V. C. (2000). Concrete reinforcement with recycled fibers. Journal of Materials in Civil Engineering, 12, 314–319. doi:10.1061/(ASCE)0899-1561(2000)12:4(314)
  • Xiao, J., & Falkner, H. (2006). On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Safety Journal, 41, 115–121. doi:10.1016/j.firesaf.2005.11.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.