417
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Stiffness of a biocemented sand at small strains

, &
Pages 1238-1256 | Received 26 Feb 2016, Accepted 07 Oct 2016, Published online: 21 Oct 2016

References

  • Acar, B. Y., & El-Tahir A. E. (1986). Low strain dynamic properties of artificially cemented sand. Journal of Geotechnical Engineering, 112, 1001–1015. doi:10.1061/(ASCE)0733-9410(1986)112:11(1001)
  • Allman, M. A., & Poulos, H. G. (1988). Stress-stress behaviour of an artificially cemented calcareous soil. In R. J. Jewell & D. C. Andrews (Eds.), Proceedings of the “International Conference on Calcareous Sediments” (Vol. 2, pp. 51–58). Rotterdam: Balkema.
  • ASTM D4253-16. (2016). Standard test methods for maximum index density and unit weight of soils using a vibratory table. West Conshohocken, PA: ASTM International.
  • ASTM D4254-16. (2016). Standard test methods for minimum index density and unit weight of soils and calculation of relative density. West Conshohocken, PA: ASTM International.
  • ASTM D6913-04. (2004). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. West Conshohocken, PA: ASTM International.
  • ASTM D854-14. (2014). Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken, PA: ASTM International.
  • Banagan, B. L., Wertheim, B. M., Roth, M. J. S., & Caslake, L. F. (2010). Microbial strengthening of loose sand. Letters in Applied Microbiology, 51, 138–142. ISSN: . doi:10.1111/j.1472-765X.2010.02872.x
  • Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28, 404–409. doi:10.1016/S0141-0229(00)00348-3
  • Baudet, B., & Stallebrass, S. (2004). A constitutive model for structured clays. Géotechnique, 54, 269–278. doi:10.1680/geot.2004.54.4.269
  • Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Géotechnique, 40, 329–378. doi:10.1680/geot.1990.40.3.329
  • Cabalar, A. F., & Clayton, C. R. I. (2016). Effect of temperature on triaxial behaviour of a sand with disaccharide. Periodica Polytechnica Civil Engineering. No. 8631. doi:10.331/PPci.8631
  • Cabalar, A. F., & Clayton, C. R. I. (2010). Some observations of the effects of pore fluids on the triaxial behaviour of a sand. Granular Matter, 12, 87–95.10.1007/s10035-009-0164-0
  • Cheng, L., & Cord-Ruwisch, R. (2012). In situ soil cementation with ureolytic bacteria by surface percolation. Ecological Engineering, 42, 64–72. doi:10.1016/j.ecoleng.2012.01.013
  • Clayton, C. R. I. (2011). Stiffness at small strain – Research and practice. Géotechnique, 61, 5–37.10.1680/geot.2011.61.1.5
  • Clayton, C. R. I., & Heymann, G. (2001). Stiffness of geomaterials at very small strains. Géotechnique, 51, 245–255. doi:10.1680/geot.2001.51.3.245
  • Clayton, C. R. I., Hight, D. W., & Hopper, R. J. (1992). Progressive destructuring of Bothkennar clay: Implications for sampling and reconsolidation procedures. Géotechnique, 42, 219–239. doi:10.1680/geot.1992.42.2.219
  • Clough, G. W., Kuck, W. M., & Kasali, G. (1979). Silicate-stabilized sands. Journal of the Geotechnical Engineering Division, ASCE, 105, 65–82.
  • Coop, M. R., & Atkinson, J. H. (1993). The mechanics of cemented carbonate sands. Géotechnique, 43, 53–67. doi:10.1680/geot.1993.43.1.53
  • Cotecchia, F., & Chandler, R. J. (2000). A general framework for the mechanical behaviour of clays. Géotechnique, 50, 431–447. doi:10.1680/geot.2000.50.4.431
  • Cuccovillo, T., & Coop, M. R. (1997). The measurement of local axial strains in triaxial tests using LVDTs. Géotechnique, 47, 167–171. doi:10.1680/geot.1997.47.1.167
  • Cuccovillo, T., & Coop, M. R. (1999). On the mechanics of structured sands. Géotechnique, 49, 741–760. doi:10.1680/geot.1999.49.6.741
  • DeJong, J. T., Fritzges, M. B., & Nusslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 132, 1381–1392. doi:10.1061/(ASCE)1090-0241(2006)132:1181381)
  • DeJong, J. T., Mortensen, M. B., Martinez, B. C., & Nelson, D. C. (2010). Biomediated soil improvement. Ecological Engineering, 36, 197–210. doi:10.1016/j.ecoleng.2008.12.029
  • DeJong, J. T., Soga, K., Kavazanjian, E., Burns, S., Van passen, L. A., Al Qabany, A., … Chen, C. Y. (2013). Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Géotechnique, 63, 287–301. doi:10.1680/geot.SIP13.P.017
  • Etemadi, O., Petrisor, I. G., Kim, D., Wan, M. W., & Yen, T. F. (2003). Stabilization of metals in subsurface by biopolymers: Laboratory drainage flow studies. Soil and Sediment Contamination, 12, 647–661. doı:10.1080/714037712
  • Fearon, R. E., & Coop, M. R. (2000). Reconstitution: What makes an appropriate reference material?. Géotechnique, 50, 471–477. doi:10.1680/geot.2000.50.4.471
  • Fernandez, A. L., & Santamarina, J. C. (2001). Effect of cementation on the small-strain parameters of sands. Canadian Geotechnical Journal, 38, 191–199. doi:10.1139/cgj-38-1-191
  • Gens, A., & Nova, R. (1993). Conceptual bases for a constitutive model for model for bonded soils and weak rocks. In A. Anagnostopoulos et al. (Eds.), Geotechnical engineering of hard soils-soft rocks (Vol. 1, pp. 485–494). Rotterdam: Balkema.
  • Haeri, S. M., Hamidi, A., & Tabatabaee, N. (2005). The effect of gypsum cementation on the mechanical behavior of gravely sands. ASTM, Geotechnical Testing Journal., 28, 180–190.
  • Hight, D. W., Böese, R., Butcher, A. P., Clayton, C. R. I., & Smith, P. R. (1992). Disturbance of the Bothkennar clay prior to laboratory testing. Géotechnique, 42, 199–217. doi:10.1680/geot.1992.42.2.199
  • Huang, J. T., & Airey, D. W. (1998). Properties of artificially cemented carbonate sand. J. Geotech. Geoenvir. Engng Div. ASCE., 124, 492–499. doi:10.1061/(ASCE)1090-0241(1998)124:6(492)
  • Ismail, M. A., Joer, H. A., & Randolph, M. F. (2000). Sample preparation technique for artificially cemented soils. Geotechnical Testing Journal, GTJODJ, 23, 171–177. doi:10.1520/GTJ11041J
  • Ismail, M. A., Joer, H. A., Randolph, M. F., & Meritt, A. (2002). Cementation of porous materials using calcite. Géotechnique, 52, 313–324. doi:10.1680/geot.52.5.313.38709
  • Ivanov, V. (2010). Environmental microbiology for engineers (p. 402). Boca Raton: CRC Press, Taylor & Francis Group.
  • Jardine, R. J., Symes, M. J., & Burland, J. B. (1984). The measurement of soil stiffness in the triaxial apparatus. Géotechnique, 34, 323–340. doi:10.1680/geot.1984.34.3.323
  • Khachatoorian, R., Petrisor, I. B., Kwan, C. C., & Yen, T. F. (2003). Biopolymer plugging effect: Laboratory-pressurized pumping flow studies. Journal of Petroleum Science and Engineering, 38, 13–21. doi:10.1016/S0920-4105(03)00019-6
  • Kohata, Y., Tatsuokaj, F., Wang, L., Jiang, G. L., Hoque, E., & Kodaka, T. (1997). Modelling the non-linear deformation properties of stiff geomaterials. Géotechnique, 47, 563–580. doi:10.1680/geot.1997.47.3.563
  • Lade, P. V. (2016). Triaxial equipment, in triaxial testing of soils. Chichester: John Wiley & Sons. doi:10.1002/9781119106616.ch3.
  • Lappin-Scott, H. M., Cusack, F., & Costerton, J. W. (1988). Nutrient resuscitation and growth of starved cells in sandstone cores: A novel approach to enhanced oil recovery. Applied and Environmental Microbiology, 54, 1373–1382.
  • Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40, 467–488. doi:10.1680/geot.1990.40.3.467
  • Likitlersuang, S., Teachavorasinskun, S., Surarak, C., Oh, E., & Balasubramaniam, A. (2013). Small strain stiffness and stiffness degradation curve of Bangkok Clays. Soils and Foundations, 53, 498–509.10.1016/j.sandf.2013.06.003
  • Liu, M. D., & Carter, J. P. (2000). Modelling the destructuring of soils during virgin compression. Géotechnique, 50, 479–483. doi:10.1680/geot.2000.50.4.479
  • Macleod, F. A., Lappin-Scott, H. M., & Costerton, J. W. (1988). Plugging of a model rock system by using starved bacteria. Applied and Environmental Microbiology, 54, 1365–1372. doi:0099-2240/88/)61365-08$02.00/0
  • Mair, R. J. (1992). Developments in geotechnical engineering research: Applications to tunnels and deep excavations. Unwin Memorial Lecture 1992. Proceedings of the Institution of Civil Engineers: Civil Engineering, 1, 27–41.
  • Malandraki, V., & Toll, D. G. (2000). Drained probing triaxial tests on a weakly bonded artificial soil. Géotechnique, 50, 141–151. doi:10.1680/geot.2000.50.2.141
  • Malandraki, V., & Toll, D. G. (2001). Triaxial tests on weakly bonded soil with changes in stress path. Journal of Geotechnical and Geoenvironmental Engineering, 127, 282–291. doi:10.1061/(ASCE)1090-0241(2001)127:3(282)
  • Mitchell, J. K. (1976). Fundamentals of soil behaviour. Toronto: Wiley.
  • Montoya, B. M., DeJong, J. T., & Boulanger, R. W. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique, 63, 302–312. doi:10.1680/geot.SIP13.P.019
  • Perkins, S. W., Gyr, P., & James, G. (2000). The influence of the biofilm on the mechanical behavior of the sand. Geotechnical Testing Journal, 23, 300–312. doi:10.1520/GTJ11052J
  • Qabany, A., & Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique, 63, 331–339. doi:10.1680/geot.SIP13.P.022
  • Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using micro-organisms. ACI Mater. J., 98, 3–9.
  • Ramakrishnan, V., Bang, S. S., & Deo, K. S. (1998). A novel technique for repairing cracks in high performance concrete using bacteria (pp. 597–618). Perth: Proc. of the Int. Conf. on HPHSC.
  • Ratananikom, W., Likitlersuang, S., & Yimsiri, S. (2013). An investigation of anisotropic elastic parameters of Bangkok Clay from vertical and horizontal cut specimens. Geomechanics and Geoengineering, 8, 15–27.10.1080/17486025.2012.726746
  • Rebata-Landa, V., & Santamarina, J. C. (2012). Mechanical effects of biogenic nitrogen gas bubbles in soils. Journal of Geotechnical and Geoenvironmental Engineering, 138, 128–137. doi:10.1061/(ASCE)GT.1943-5606.0000571
  • Rios, S., Viana da Fonseca, A., & Baudet, B. A. (2014). On the shearing behaviour of an artificially cemented soil. Acta Geotechnica, 9, 215–226.10.1007/s11440-013-0242-7
  • Saxena, S. K., & Lastrico, R. M. (1978). Static properties of lightly cemented sand. Journal of the Geotechnical Engineering Division GT12, 104, 1449–1464.
  • Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31, 1563–1571. doi:10.1016/S0038-0717(99)00082-6
  • Taheri, A., & Tatsuoka, F. (2015). Small- and large-strain behaviour of a cement-treated soil during various loading histories and testing conditions. Acta Geotechnica, 10, 131–155.10.1007/s11440-014-0339-7
  • Thullner, M., & Baveye, P. (2008). Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media. Biotechnology and Bioengineering, 99, 1337–1351. doi:10.1002/bit.21708
  • Trhlíková, J., Mašín, D., & Boháč, J. (2012). Small strain behaviour of cemented soils. Géotechnique, 62, 943–947.10.1680/geot.9.P.100
  • Van der Ruyt, M., & van der Zon, W. (2009). Biological in situ reinforcement of sand in near-shore areas. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 162, 81–83.10.1680/geng.2009.162.1.81
  • Van Paassen, L. A., van Loosdrecht, M. C. M., Pieron, M., Mulder, A., Ngan-Tillard, D. J. M., & van der Linden, T. J. M. (2010a). Strength and deformation of biologically cemented sand stone. In I. Karst-Vrkljan (Ed.), RISRM regional conference EUROCK 2009 – Rock engineering in difficult ground conditions – Soft rocks and karst, Dubrovnik, Croatia (pp. 405–410). London: Taylor & Francis Group. ISBN 978-0-415-80481-3.
  • Van Paassen, L., Ghose, R., van der Linden, T., van der Star, W., & van Loosdrecht, M. (2010b). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136, 721–1728.
  • Weil, M. H., DeJong, J. T., Martinez, B. C., & Mortensen, B. M. (2011). Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand. Geotechnical Testing Journal, 35 (2), 1–12. doi:10.1520/GTJ103365
  • Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24, 417–423. doı:10.1080/01490450701436505
  • Yang, Y. I. C., Li, Y., Park, J. K., & Yen, T. F. (1994). Subsurface application of slime-forming bacteria in soil matrices. In R. E. Hinchee et al (Eds.), Applied biotechnology for site remediation (pp. 268–274). Boca Raton, FL: CRC Press. 268–274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.