841
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical and durability properties of a soil stabilised with an alkali-activated cement

, , , &
Pages 245-267 | Received 04 Jul 2016, Accepted 13 Dec 2016, Published online: 06 Jan 2017

References

  • Abdollahnejad, Z., Miraldo, S., Pacheco-Torgal, F., & Aguiar, J. B. (2015). Cost-efficient one-part alkali-activated mortars with low global warming potential for floor heating systems applications. European Journal of Environmental and Civil Engineering, 1–18.10.1080/19648189.2015.1125392
  • ABNT NBR 13554:2012. (2012). Soil-cement – Wetting and drying tests – Method of test. Associação Brasileira de Normas Técnicas, Rio de Janeiro (in Portuguese).
  • AFNOR NF P 94-078. (1997). CBR index after immersion. Paris: Association Française de Normalisation.
  • Alonso, S., & Palomo, A. (2001). Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio. Materials Letters, 47, 55–62. doi:10.1016/S0167-577X(00)00212-3
  • ASTM C 618. (2015). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, Annual Book of ASTM Standards, Vol. 04.02, 1–5.
  • ASTM D 1632. (2007). Standard practice for making and curing soil-cement compression and flexure test specimens in the laboratory. ASTM Int. Annu. B. Stand. Vol. 04.08, 1–5.
  • ASTM D 1633. (2007). Standard test methods for compressive strength of molded soil-cement cylinders. ASTM Int. Annu. B. Stand. Vol. 04.08, 1–5.
  • ASTM D 1634. (2000). Standard test method for compressive strength of soil-cement using portions of beams broken in flexure (modified cube method). ASTM Int. Annu. B. Stand, Vol. 04.08, 1–5.
  • ASTM D 1883. (2016). Standard test method for California bearing ratio (CBR) of laboratory-compacted soils. ASTM Int. Annu. B. Stand, Vol. 04.08, 1–5.
  • ASTM D 2487-2006. (2011). Standard practice for classification of soils and engineering purposes (Unified Classification System). ASTM Int. Annu. B. Stand. Vol. 04.08, 1–5.
  • ASTM D 422. (1998). Standard test method for particle size analysis of soils. ASTM Int. Annu. B. Stand, Vol. 04.08, 1–8.
  • Bernal, S., Mejía de Gutiérrez, R., Pedraza, A. L., & Provis, J. L. (2011). Effect of binder content on the performance of alkali-activated slag concretes. Cement and Concrete Research, 41, 1–8. doi:10.1016/j.cemconres.2010.08.017
  • Brito, L. (2011). Design methods for low cost roads ( PhD thesis submitted to the University of Nottingham, UK).
  • Comité Européen de Normalisation. (2005). EN ISO/IEC 17025. General requirements for the competence of testing and calibration laboratories. Brussels: Author.
  • Comité Européen de Normalisation. (2006). EN 14227–10 - Mélanges Traités Aux Liants Hydrauliques - Spécifications – Partie10: Sol Traité Au Ciment. Brussels: Author.
  • Consoli, N., Heineck, K., Coop, M., Fonseca, A., & Ferreira, C. (2007). Coal bottom ash as a geomaterial: Influence of particle morphology on the behaviour of granular materials. Soils and Foundations, 47, 361–373. doi:10.3208/sandf.47.361
  • Consoli, N., Rosa, A., & Saldanha, R. (2011). Variables governing strength of compacted soil-fly ash-lime mixtures. Journal of Materials in Civil Engineering, 23, 432–440. doi:10.1061/(ASCE)MT.1943-5533.0000186
  • Cristelo, N., Glendinning, S., Fernandes, L., & Pinto, A. (2013). Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotechnica, 8, 395–405. doi:10.1007/s11440-012-0200-9
  • Cristelo, N., Glendinning, S., Miranda, T., Oliveira, D., & Silva, R. (2012). Soil stabilisation using alkaline activation of fly ash for self-compacting rammed earth construction. Construction and Building Materials, 36, 727–735. doi:10.1016/j.conbuildmat.2012.06.037
  • Cristelo, N., Glendinning, S., & Teixeira Pinto, A. (2011). Deep soft soil improvement by alkaline activation. Proceedings of the Institution of Civil Engineers – Ground Improvement, 164(GI2), 73–82. doi:10.1680/grim.900032
  • Davidovits, J. (1991). Geopolymers. Journal of Thermal Analysis, 37, 1633–1656.10.1007/BF01912193
  • Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42, 2917–2933.10.1007/s10853-006-0637-z
  • Fernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure development of alkali-activated fly ash cement: A descriptive model. Cement and Concrete Research, 35, 1204–1209. doi:10.1016/j.cemconres.2004.08.021
  • Ferreira, C., Fonseca, A., & Nash, D. (2011). Shear wave velocities for sample quality assessment on a residual soil. Soils and Foundations, 51, 683–692. doi:10.3208/sandf.51.683
  • Fukubayashi, Y., & Kimura, M. (2014). Improvement of rural access roads in developing countries with initiative for self-reliance of communities. Soils and Foundations, 54, 23–35. doi:10.1016/j.sandf.2013.12.003
  • Ghosh, A., & Subbarao, C. (2001). Microstructural development in fly ash modified with lime and gypsum. Journal of Materials in Civil Engineering, 13, 65–70. doi:10.1061/(ASCE)0899-1561(2001)13:1(65), 65-70
  • Guedes, S. (2013). Mechanical behavior of soil-cement reinforced with synthetic fibers for low cost roads ( PhD thesis submitted to the Federal University of Pernambuco, Recife, Brasil) (in Portuguese).
  • Guedes, S., Coutinho, R., & Viana da Fonseca, A. (2015). Criteria to evaluate the cement content in a soil for a pavement base course. Geotecnia, 134, 127–145 (in Portuguese).
  • Hwang, C.-L., & Huynh, T.-P. (2015). Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials, 101(1), 1–9. doi:10.1016/j.conbuildmat.2015.10.025
  • Laboratoire Central des Ponts et Chaussés. (2000). Guide technique pour le traitement des sols à la chaux et/ou aux liants hydrauliques. Application à la réalisation des remblais et des couches de forme ( Technical guide for soils treated with lime and cement, in French). Laboratoire Central des Ponts et Chaussés (LCPC/SETRA).
  • Lee, J., & Santamarina, J. (2005). Bender elements: Performance and signal interpretation. Journal of Geotechnical and Geoenvironmental Engineering, 131, 1063–1070. doi:10.1061/(ASCE)1090-0241(2005)131:9(1063)
  • Mateos, M., & Davidson, D. T. (1962). Lime and fly ash properties in soil-lime stabilization. Highway Research Board Bulletin, 335, 40–64.
  • Messina, F., Ferone, C., Colangelo, F., & Cioffi, R. (2015). Low temperature alkaline activation of weathered fly ash: Influence of mineral admixtures on early age performance. Construction and Building Materials, 86, 169–177. doi:10.1016/j.conbuildmat.2015.02.069
  • Molero, M., Segura, I., Aparicio, S., & Fuente, J. V. (2011). Influence of aggregates and air voids on the ultrasonic velocity and attenuation in cementitious materials. European Journal of Environmental and Civil Engineering, 15, 501–517.10.1080/19648189.2011.9693343
  • Obana, M., Levacher, D., & Dhervilly, P. (2012). Durability properties of marine sediments stabilised by pozzolan and alkali-activated binders. European Journal of Environmental and Civil Engineering, 16, 919–926.10.1080/19648189.2012.676414
  • Peirce, S., Santoro, L., Andini, S., Montagnaro, F., Ferone, C., & Cioffi, R. (2015). Clay sediment geopolymerization by means of alkali metal aluminate activation. RSC Advances, 5(130), 107662–107669.10.1039/C5RA22140D
  • Phummiphan, I., Horpibulsuk, S., Sukmak, P., Chinkulkijniwat, A., Arulrajah, A., & Shen, S.-L. (2016). Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer. Road Materials and Pavement Design, 17, 877–891. doi:10.1080/14680629.2015.1132632
  • Provis, J., & van Deventer, J. (Eds.). (2014). Alkali activated materials: State-of-the-art report ( RILEM TC 224-AAM). Heidelberg: Springer.
  • Rashad, A., & Zeedan, S. (2011). The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Construction and Building Materials, 25, 3098–3107.10.1016/j.conbuildmat.2010.12.044
  • Rios, S., Cristelo, N., Miranda, T., Araújo, N., & Oliveira, J. (2016). Increasing the reaction kinetics of alkali activated fly ash binders for stabilisation of a silty sand pavement sub-base. Road Materials and Pavement Design, 1–22. doi:10.1080/14680629.2016.1251959
  • Rios, S., Cristelo, C., Viana da Fonseca, A., & Ferreira, C. (2016a). Structural performance of alkali activated soil-ash versus soil-cement. Journal of Materials in Civil Engineering, 28(2), 1–11. doi:10.1061/(ASCE)MT.1943-5533.0001398
  • Rios, S., Cristelo, C., Viana da Fonseca, A., & Ferreira, C. (2016b). Small and large strain behavior of soil-geopolymer versus soil-cement. International Journal of Geomechanics, 1–12. doi:10.1061/(ASCE)GM.1943-5622.0000783
  • Rios, S., & Viana da Fonseca, A. (2013). Porosity/cement index to evaluate geomechanical properties of an artificial cemented soil. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 2589–2592). Paris.
  • Rios, S., Viana da Fonseca, A., & Baudet, B. (2014). On the shearing behaviour of an artificially cemented soil. Acta Geotechnica, 9, 215–226. doi:10.1007/s11440-013-0242-7
  • Sukmak, P., Horpibulsuk, S., & Shen, S.-L. (2013). Strength development in clay–fly ash geopolymer. Construction and Building Materials, 40, 566–574. doi:10.1016/j.conbuildmat.2012.11.015
  • Szymkiewicz, F., Guimond-Barrett, A., Kouby, A. L., & Reiffsteck, P. (2012). Influence of grain size distribution and cement content on the strength and aging of treated sandy soils. European Journal of Environmental and Civil Engineering, 16, 882–902.10.1080/19648189.2012.676362
  • Tahri, W., Abdollahnejad, Z., Mendes, J., Pacheco-Torgal, F., & de Aguiar, J. B. (2016). Cost efficiency and resistance to chemical attack of a fly ash geopolymeric mortar versus epoxy resin and acrylic paint coatings. European Journal of Environmental and Civil Engineering, 1–17.10.1080/19648189.2015.1134674
  • Viana da Fonseca, A., Ferreira, C., & Fahey, M. (2009). A framework interpreting bender element tests, combining time-domain and frequency-domain methods. Geotechnical Testing Journal, 32(2), 1–17. doi:10.1520/GTJ100974
  • Wang, D., Abriak, N. E., & Zentar, R. (2015). One-dimensional consolidation of lime-treated dredged harbour sediments. European Journal of Environmental and Civil Engineering, 19, 199–218.10.1080/19648189.2014.939309
  • Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59, 247–266.10.1016/S0301-7516(99)00074-5
  • Xu, H. & van Deventer, J. S. J. (2003). Effect of source materials on geopolymerization. Industrial & Engineering Chemistry Research, 42, 1698–1706.
  • Yi, Y., Li, C., & Liu, S. (2015). Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay. Journal of Materials in Civil Engineering, 27(4), 1–7. doi:10.1061/(ASCE)MT.1943-5533.0001100
  • Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468–1478. doi:10.1016/j.conbuildmat.2013.06.017
  • Zhao, H., Zhou, K., Zhao, C., Gong, B.-W., & Liu, J. (2016). A long-term investigation on microstructure of cement-stabilized handan clay. European Journal of Environmental and Civil Engineering, 20, 199–214.10.1080/19648189.2015.1030087

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.