150
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical soil water characteristic curves for large graded soil

, , , , , & show all
Pages 831-865 | Received 22 Jul 2016, Accepted 11 Apr 2017, Published online: 02 May 2017

References

  • Arairo, W. (2013). Influence des cycles hydriques de la dessication et de l’humidification sur le comportement hydromécanique des géomatériaux non saturés ( Thèse) [Influence of drying and wetting water cycles on the hydromechanical behavior of unsaturated geomaterials (Ph.D Thesis)]. Lyon: INSA.
  • Boutonnier, L. (2007). Comportement hydromécanique des sols fins proches de la saturation. Cas des ouvrages en terre : coefficient B, déformations instantanées et différées, retrait / gonflement ( Thèse) [Hydromechanical behavior of fine soils close to saturation. Case of earth structures: B coefficient, instantaneous and deferred deformations, shrinkage / swelling (Ph.D thesis)]. Grenoble: INPG.
  • Brooks, R. T., & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology paper n°3, Civil Engineering Department, Colorado State University Fort Collins, CO.
  • Chin, K. B., Leong, E. C., & Rahardjo, H. (2010). A simplified method to estimate the soil-water characteristic curve. Canadian Geotechnical Journal, 47, 1382–1400.10.1139/T10-033
  • De Larrard, F. (1999). Structure granulaire et formulation des bétons. Etudes et recherches des LCPC, n°OA 34.
  • Fatt, I. (1956). The network model of porous media, III. Dynamic Properties of Networks with Tube Radius Distribution, Petroleum Transactions, AIME, 207, 164–177.
  • Frydman, S., & Baker, R. (2009, November–December). Theoretical soil-watre characteristic curves based on adsorption, cavitation and a double porosity model. In International Journal of Geomechanics, ASCE (pp. 250–257).
  • Gagneux, G., & Millet, O. (2014). Analytical calculation of capillarity bridge properties deduced as an inverse problem from experimental data. Transport in Porous Media, 105, 117–139.10.1007/s11242-014-0363-y
  • Gagneux, G., & Millet, O. (2016). An analytical framework for evaluating the cohesion effects of coalescence between capillarity bridges. Granular Matter, 18, 1–13.
  • Gallipoli, D., Wheeler, S. J., & Karstunen, M. (2003). Modelling the variation of degree of saturation in a deformable unsaturated soil. Géotechnique, 53, 105–112.10.1680/geot.2003.53.1.105
  • Gens, A., Alonso, E., Suriol, J., & Lloret, A. (1995). Effect of structure on the volumetric behaviour of compacted soil. In Proceedings of 1st International Conference on unsaturated soil (pp. 93–88). Rotterdam: Balkema.
  • van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.10.2136/sssaj1980.03615995004400050002x
  • Gras, J. P. (2011). Approche micromécanique de la capillarité dans les milieu granulaires: retention d’eau et comportement mécanique (Thèse). Montpellier: Université de Montpellier.
  • Guide Technique. (2000). Réalisation des remblais et des couches de forme, fascicule 1, Principes généraux, Ministère de l’Equipement du Logement et des Transports. Paris: Laboratoire Central des Ponts et Chaussées.
  • Indarto. (1991, Septembre). Comportement mécanique et compactage des matéraux de barrage (Thèse de Doctorat). Châtenay-Malabry: Ecole Centrale de Paris.
  • Kutilek, M., & Nielsen, D. R. (1994). Soil water retention curve interpetation. In Soil hydrology (pp. 102–120). Catena Verlag.
  • Li, Y., & Wardlaw, N. C. (1986). Mechanisms of nonwetting phase trapping during imbibition at slow rates. Journal of Colloid and Interface Science, 109, 473–486.
  • Mason, G., & Morrow, N. R. (1991). Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. Journal of Colloid and Interface Science, 141, 262–274.10.1016/0021-9797(91)90321-X
  • Millington, R. J., & Quirk, J. P. (1961). Permeability of porous media. Nature, 183, 387–388.
  • Monnet, J., & Boutonnier, L. (2012, December). Calibration of an unsaturated air–water–soil model. Archives of Civil and Mechanical Engineering, 12, 493–449.
  • Monnet, J., Mahmutovic, D., Boutonnier, L., & Taibi, S. (2017). A theoretical retention model for unsaturated uniform soil. European Journal of Environmental and Civil Engineering, 21, 1–23.
  • Mualen, Y. (1976). A new model for predicting hydraulic conductivity of unsaturated porous media. Water Resource Research, 12, 513–522.
  • Or, D., & Tuller, M. (1999). Liquid retention and interfacial area in variably saturated porous media: upscaling from single pore to sample-scale model. Water Research, 35, 3591–3605.
  • Pasha, A. Y., Khoshghalb, A., & Khalili, N. (2016). A void ratio dependant water retention curve model including hydraulic hysteresis. Paris: E-UNSAT.
  • Reeves, P. C., & Celia, M. A. (1996). A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resources Research, 32, 2345–2358.10.1029/96WR01105
  • Rynhart, P., McKibbin, R., McLachlan, R., & Jones, J. R. (2002). Mathematical modelling of granulation: static and dynamic liquid bridges. Research Letters in the Information and Mathematical Sciences, 3, 199–212.
  • Rynhart, P. R., McLachlan, R., Jones, J. R., & McKibbin, R. (2003). Solution of the Young-Laplace equation for three particles. Research Letters in the Information and Mathematical Sciences, 5, 119–127.
  • Salager, S. (2007). Etude de la rétention d’eau et de la consolidation des sols dans un cadre thermo-hydro-mécanique (Thèse). Languedoc: University of Science and Technology.
  • Santamarina, J. C., Klein, K. A., Wang, Y. H., & Prencke, E. (2002). Specific surface: Determination and relevance. Canadian Geotechnical Journal, 39, 233–241.10.1139/t01-077
  • Standard NFP94-068. (1998). Mesure de la capacité d’adsorption de bleu de méthylène d’un sol ou d’un matériau rocheux – Détermination de la valeur de bleu de méthylène d’un sol ou d’un matériau rocheux par l’essai à la tache [Measurement of the adsorption capacity of methylene blue from a soil or rock material - Determination of the methylene blue value of a soil or rock material by staining]. Paris: AFNOR.
  • Taibi, S. (1994). Comportement mécanique et hydraulique des sols soumis à une pression interstitielle négative – étude expérimentale et modélisation (Thèse). Châtenay-Malabry: Ecole Centrale Paris.
  • Taibi, S. (2007). Contribution à l’étude du comportement Thermo-Hydro-Mécanique des sols non saturés, Application à la géotechnique environnementale. Châtenay-Malabry: HDR, Ecole Centrale Paris.
  • Tuller, M., Or, D., & Dudley, L. M. (1999). Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resources Research, 35, 1949–1964.10.1029/1999WR900098

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.