207
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

An experimental study on the cyclic settlement of sand and cemented sand under different inclinations of the bedding angle and loading amplitudes

, &
Pages 971-986 | Received 31 Jan 2016, Accepted 24 Apr 2017, Published online: 06 Aug 2017

References

  • Abdullah, W. S. (2002). Bidimensional swell effect on accuracy of footing heave prediction. Geotechnical Testing Journal, 25, 177–186.
  • Al-rkaby, A. H., Chegenizadeh, A., & Nikraz, H. R. (2016). Directional-dependence in the mechanical characteristics of sand: A review. International Journal of Geotechnical Engineering, 10, 499–509.10.1080/19386362.2016.1173965
  • Asakereh, A., Ghazavi, M., & Tafreshi, S. M. (2013). Cyclic response of footing on geogrid-reinforced sand with void. Soils and Foundations, 53, 363–374.10.1016/j.sandf.2013.02.008
  • Azami, A., Pietruszczak, S., & Guo, P. (2010). Bearing capacity of shallow foundations in transversely isotropic granular media. International Journal for Numerical and Analytical Methods in Geomechanics, 34, 771–793.
  • Bolton, M. D., & Lau, C. K. (1993). Vertical bearing capacity factors for circular and strip footings on Mohr-Coulomb soil. Canadian Geotechnical Journal, 30, 1024–1033.10.1139/t93-099
  • Castellanza, R., Parma, M., Pescatore, V., & Silvestro, G. (2009). Model footing load tests on soft rocks. Geotechnical Testing Journal, 32, 262–272.
  • Cerato, A. B., & Lutenegger, A. J. (2007). Scale effects of shallow foundation bearing capacity on granular material. Journal of Geotechnical and Geoenvironmental Engineering, 133, 1192–1202.10.1061/(ASCE)1090-0241(2007)133:10(1192)
  • Das, B. M. (2004). Principles of foundation engineering. Brooks/Cole-Thomson Learning, Belmont,CA., USA.
  • Davarci, B., Ornek, M., & Turedi, Y. (2014). Model studies of multi-edge footings on geogrid-reinforced sand. European Journal of Environmental and Civil Engineering, 18, 190–205.10.1080/19648189.2013.854726
  • Das, B. M., & Omar, M. T. (1994). The effects of foundation width on model tests for the bearing capacity of sand with geogrid reinforcement. Geotechnical and Geological Engineering, 12, 133–141.10.1007/BF00429771
  • Das, B. M., & Shin, E. C. (1996). Laboratory model tests for cyclic load-induced settlement of a strip foundation on a clayey soil. Geotechnical and Geological Engineering, 14, 213–225.
  • Eghbali, A., & Fakharian, K. (2014). Effect of principal stress rotation in cement-treated sands using triaxial and simple shear tests. International Journal of Civil Engineering, 12, 1–14.
  • El Sawwaf, M., & Nazir, A. K. (2010). Behavior of repeatedly loaded rectangular footings resting on reinforced sand. Alexandria Engineering Journal, 49, 349–356.10.1016/j.aej.2010.07.002
  • Fonseca, J., O’sullivan, C., Coop, M. R., & Lee, P. D. (2013). Quantifying the evolution of soil fabric during shearing using scalar parameters. Géotechnique, 63, 818–829.10.1680/geot.11.P.150
  • Fu, P., & Dafalias, Y. F. (2011a). Study of anisotropic shear strength of granular materials using DEM simulation. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1098–1126.10.1002/nag.v35.10
  • Fu, P., & Dafalias, Y. F. (2011b). Fabric evolution within shear bands of granular materials and its relation to critical state theory. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1918–1948.10.1002/nag.v35.18
  • Gao, Z., & Zhao, J. (2012). Constitutive modeling of artificially cemented sand by considering fabric anisotropy. Computers and Geotechnics, 41, 57–69.10.1016/j.compgeo.2011.10.007
  • Guo, P. (2008). Modified direct shear test for anisotropic strength of sand. Journal of Geotechnical and Geoenvironmental Engineering., 134, 1311–1318.10.1061/(ASCE)1090-0241(2008)134:9(1311)
  • Hosseininia, E. S. (2012a). Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granular Matter, 14, 483–503. doi:10.1007/s10035-012-0340-5
  • Hosseininia, E. S. (2012b). Discrete element modeling of inherently anisotropic granular assemblies with polygonal particles. Particuology, 10, 542–552.10.1016/j.partic.2011.11.015
  • Hosseininia, E. S. (2013). Stress–force–fabric relationship for planar granular materials. Geotechnique, 63, 830–841.10.1680/geot.12.P.055
  • Ishihara, K., & Towhata, I. (1983). Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations, 23, 11–26.10.3208/sandf1972.23.4_11
  • Kawamura, S., Miura, S., & Yokohama, S. (2010). Mechanical behavior of anisotropic sand ground beneath structures subjected to cyclic loading such as wave loading. Soils and Foundations, 50, 645–657.10.3208/sandf.50.645
  • Kawamura. S, & Miura, S. (2013). Bearing capacity improvement of anisotropic sand ground. Proceedings of the Institution of Civil Engineers – Ground Improvement, 167, 192–205.
  • Kusakabe, O. (1995). Foundations. In R. N. Taylor (Ed.), Geotechnical centrifuge technology (pp. 118–167). London: Blackie and Professional.
  • Lal, B. R. R., & Mandal, J. N. (2014). Model tests on geocell walls under strip loading. Geotechnical Testing Journal, 37, 1–11.
  • Li, X. S., & Dafalias, Y. F. (2012). Anisotropic critical state theory: Role of fabric. Journal of Engineering Mechanics, 138, 263–275.10.1061/(ASCE)EM.1943-7889.0000324
  • Lo, S. R., Lade, P. V., & Wardani, S. P. R. (2003). An experimental study of the mechanics of two weakly cemented soils. Geotechnical Testing Journal, 26, 1–14.
  • Oda, M., Isao, K., & Toshio, H. (1978). Experimental study of anisotropic shear strength of sand by plane strain test. Soils and Foundations, 18, 25–38.10.3208/sandf1972.18.25
  • Oda, M., Kazama, H., & Konishi, J. (1998). Effects of induced anisotropy on the development of shear bands in granular materials. Mechanics of Materials, 28, 103–111.10.1016/S0167-6636(97)00018-5
  • Oda, M., & Koishikawa, I. (1979). Effect of strength anisotropy on bearing capacity of shallow footing in a dense sand. Soils and Foundations, 19, 15–28.10.3208/sandf1972.19.3_15
  • Salehzadeh, H., Hassanlourad, M., Procter, D. C., & Merrifield, C. M. (2008). Compression and extension monotonic loading of a carbonate sand. International Journal of Civil Engineering, 6, 266–274.
  • Saxena, S. K., Reddy, K. R., & Avramidis, A. S. (1988). Liquefaction resistance of artificially cemented sand. Journal of Geotechnical Engineering, 114, 1395–1413.10.1061/(ASCE)0733-9410(1988)114:12(1395)
  • Sazzad, M. M. (2014). Micro-scale behavior of granular materials during cyclic loading. Particuology, 16, 132–141.10.1016/j.partic.2013.12.005
  • Sazzad, M. M., & Suzuki, K. (2010). Micromechanical behavior of granular materials with inherent anisotropy under cyclic loading using 2D DEM. Granular Matter, 12, 597–605.10.1007/s10035-010-0200-0
  • Shiraishi, S. (1990). Variation in bearing capacity factors of dense sand assessed by model loading tests. Soils and Foundations, 30, 17–26.10.3208/sandf1972.30.17
  • Swan Cement Material Safety Data Sheets (2012). Product Data AS3972 General Purpose Cement Type GP Retrieved from http://swancement.com.au/wp-content/uploads/sites/2/2014/03/Kwinana-Grey-GP-24May12.pdf
  • Tafreshi, S. M., & Dawson, A. R. (2012). A comparison of static and cyclic loading responses of foundations on geocell-reinforced sand. Geotextiles and Geomembranes, 32, 55–68.10.1016/j.geotexmem.2011.12.003
  • Tafreshi, S. M., & Norouzi, A. H. (2012). Bearing capacity of a square model footing on sand reinforced with shredded tire – An experimental investigation. Construction and Building Materials, 35, 547–556.10.1016/j.conbuildmat.2012.04.092
  • Tejchman, J., & Herle, I. (1999). A″ Class A″ prediction of the bearing capacity of plane strain footings on sand. Soils and Foundations, 39, 47–60.10.3208/sandf.39.5_47
  • Tong, Z., Zhang, J., Yu, Y., & Zhang, G. (2010). Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes. Journal of Geotechnical and Geoenvironmental Engineering, 136, 1509–1518. doi:10.1061/(ASCE)GT.1943-5606.0000378:1509-1518
  • Tong, Z., Fu, P., Zhou, S., & Dafalias, Y. F. (2014). Experimental investigation of shear strength of sands with inherent fabric anisotropy. Acta Geotechnica, 9, 257–275.10.1007/s11440-014-0303-6
  • Vinod, J. S., Indraratna, B., & Moghaddam, A. (2011). Behaviour of geocell reinforced foundation under cyclic loading. In Proceedings of Indian Geotechnical Conference, 15–17 December. ( Paper No. J-122). Kochi: Indian Geotechnical Society.
  • Wang, Y. H., & Leung, S. C. (2008). Characterization of cemented sand by experimental and numerical investigations. Journal of Geotechnical and Geoenvironmental Engineering, 134, 992–1004.10.1061/(ASCE)1090-0241(2008)134:7(992)
  • Xiong, H., Guo, L., Cai, Y., & Yang, Z. (2015). Experimental study of drained anisotropy of granular soils involving rotation of principal stress direction. European Journal of Environmental and Civil Engineering, 20, 431–454. doi:10.1080/19648189.2015.1039662
  • Yeo, B., Yen, S. C., Puri, V. K., Das, B. M., & Wright, M. A. (1993). A laboratory investigation into the settlement of a foundation on geogrid-reinforced sand due to cyclic load. Geotechnical and Geological Engineering, 11, 1–14.10.1007/BF00452917

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.