159
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Performances of cementitious mortars containing recycled synthetic fibres under hot-dry climate

, &
Pages 1235-1247 | Received 30 Dec 2016, Accepted 16 May 2017, Published online: 28 Jun 2017

References

  • Ahmadi, B. H. (2000). Initial and final setting time of concrete in hot weather. Materials & Structures, 33, 511–514.10.1007/BF02480528
  • Al-Amoudi, O. S. B., Maslehuddin, M., Shameem, M., & Ibrahim, M. (2007). Shrinkage of plain and silica fume cement concrete under hot weather. Cement & Concrete Composites, 29, 690–699.10.1016/j.cemconcomp.2007.05.006
  • Al-Fadhala, M., & Hover, K. C. (2001). Rapid evaporation from freshly cast concrete and the Gulf environment. Construction & Building Materials, 15, 1–7.10.1016/S0950-0618(00)00064-7
  • Almusallam, A. A. (2001). Effect of environmental conditions on the properties of fresh and hardened concrete. Cement & Concrete Composites, 23, 353–361.10.1016/S0958-9465(01)00007-5
  • Al-Tayyib, A. J., Al-Zahrani, M. M., Rasheeduzzafar, & Al-Sulaimani, G. J. (1988). Effect of polypropylene fiber reinforcement on the properties of fresh and hardened concrete in the Arabian Gulf environment. Cement & Concrete Research, 18, 561–570.10.1016/0008-8846(88)90049-X
  • Al-Tulaian, B. S., Al-Shannag, M. J., & Al-Hozaimy, A. R. (2016). Recycled plastic waste fibers for reinforcing Portland cement mortar. Construction & Building Materials, 127, 102–110.10.1016/j.conbuildmat.2016.09.131
  • Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement & Concrete Research, 36, 1263–1267.10.1016/j.cemconres.2006.01.010
  • Bendjillali, K., Goual, M. S., Chemrouk, M., & Damene, Z. (2011). Study of the reinforcement of limestone mortars by polypropylene fibers waste. Physics Procedia Journal, 21, 42–46.10.1016/j.phpro.2011.10.007
  • Bendjillali, K., Chemrouk, M., Goual, M. S., & Boulekbache, B. (2013). Behaviour of polypropylene fibre mortars conserved in different environments. European Journal of Environmental & Civil Engineering, 17, 687–699.10.1080/19648189.2013.812685
  • Bentur, A., & Mindess, S. (2007). Fibre reinforced cementitious composites (2nd ed., 604 p). London and New York: Taylors & Francis.
  • Borg, R. P., Baldacchino, O., & Ferrara, L. (2016). Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction & Building Materials, 108, 29–47.10.1016/j.conbuildmat.2016.01.029
  • Bouziadi, F., Boulekbache, B., & Hamrat, M. (2016). The effects of fibres on the shrinkage of high-strength concrete under various curing temperatures. Construction & Building Materials, 114, 40–48.10.1016/j.conbuildmat.2016.03.164
  • Branch, J., Rawling, A., Hannant, D. J., & Mulheron, M. (2002). The effect of fibers on the plastic shrinkage cracking of high strength concrete. Materials & Structures, 35, 189–194.
  • Çakir, Ö., & Aköz, F. (2008). Effect of curing conditions on the mortars with and without GGBFS. Construction & Building Materials, 22, 308–314.
  • Cifuentes, H., García, F., Maeso, O., & Medina, F. (2013). Influence of the properties of polypropylene fibres on the fracture behaviour of low-, normal- and high-strength FRC. Construction & Building Materials, 45, 130–137.10.1016/j.conbuildmat.2013.03.098
  • Dreux, G., & Festa, J. (2002). Nouveaux guide du béton et de ses constituants (8 ed.). Paris: Eyrolles.
  • European Standard EN 196-1. (2005). Methods of testing cement – Part 1: Determination of strength. Brussels: European Committee for Standardization.
  • French Standard P 18-452. (1988). Bétons – Mesure du temps d’écoulement des bétons et des mortiers aux maniabilimètres. Paris: Association Française de Normalisation.
  • Gallucci, E., Zhang, X., & Scrivener, K. L. (2013). Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cement & Concrete Research, 53, 185–195.10.1016/j.cemconres.2013.06.008
  • García Santos, A., Rincón, J. M., Romero, M., & Talero, R. (2005). Characterization of a polypropylene fibered cement composite using ESEM, FESEM and mechanical testing. Construction & Building Materials, 19, 396–403.10.1016/j.conbuildmat.2004.07.023
  • Habib, A., Begum, R., & Alam, M. M. (2013). Mechanical properties of synthetic fibers reinforced mortars. International Journal of Scientific & Engineering Research, 4, 923–927.
  • Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber reinforced concrete. Materials Science & Engineering A, 494, 153–157.10.1016/j.msea.2008.05.037
  • Kakooei, S., Akil, H. M., Jamshidi, M., & Rouhi, J. (2012). The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction & Building Materials, 27, 73–77.10.1016/j.conbuildmat.2011.08.015
  • Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete. Materials & Design, 32, 1044–1049.10.1016/j.matdes.2010.07.011
  • Kawashima, S., & Shah, S. P. (2011). Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cement & Concrete Composites, 33, 201–208.10.1016/j.cemconcomp.2010.10.018
  • Kim, J. H. J., Park, C. G., Lee, S. W., Lee, S. W., & Won, J. P. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 39, 442–450.10.1016/j.compositesb.2007.05.001
  • Kim, S. B., Yi, N. H., Kim, H. Y., Kim, J. H. J., & Song, Y. C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement & Concrete Composites, 32, 232–240.10.1016/j.cemconcomp.2009.11.002
  • Kriker, A., Bali, A., Bouziane, M., & Chabannet, M. (2008). Durability of date palm fibres and their use as reinforcement in hot dry climates. Cement & Concrete Composites, 30, 639–648.10.1016/j.cemconcomp.2007.11.006
  • Lee, S. J., & Won, J. P. (2016). Shrinkage characteristics of structural nano-synthetic fibre-reinforced cementitious composites. Composite Structures, 157, 236–243.10.1016/j.compstruct.2016.09.001
  • Lura, P., van Breugel, K., & Maruyama, I. (2001). Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete. Cement & Concrete Research, 31, 1867–1872.10.1016/S0008-8846(01)00601-9
  • Ma, Y., Zhu, B., Tan, M., & Wu, K. (2004). Effect of Y type polypropylene fiber on plastic shrinkage cracking of cement mortar. Materials & Structures, 37, 92–95.10.1617/13920
  • Meddah, M. S., & Bencheikh, M. (2009). Properties of concrete reinforced with different kinds of industrial waste fibre materials. Construction & Building Materials, 23, 3196–3205.10.1016/j.conbuildmat.2009.06.017
  • Neville, A. M. (2000). Propriétés des bétons. Paris: Eyrolles.
  • Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction & Building Materials, 24, 927–933.10.1016/j.conbuildmat.2009.11.025
  • Pereira de Oliveira, L. A., & Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction & Building Materials, 25, 1712–1717.10.1016/j.conbuildmat.2010.11.044
  • Pešić, N., Živanović, S., Garcia, R., & Papastergiou, P. (2016). Mechanical properties of concrete reinforced with recycled HDPE plastic fibres. Construction & Building Materials, 115, 362–370.
  • Puertas, F., Amat, T., Fermández-Jiménez, A., & Vázquez, T. (2003). Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cement & Concrete Research, 33, 2031–2036.10.1016/S0008-8846(03)00222-9
  • Qi, C., Weiss, J., & Olek, J. (2003). Characterization of plastic shrinkage cracking in fiber reinforced concrete using image analysis and a modified Weibull function. Materials & Structures, 36, 386–395.10.1007/BF02481064
  • Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., & Najafi, M. H. (2013). Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction & Building Materials, 44, 411–418.10.1016/j.conbuildmat.2013.02.076
  • Sadrmomtazi, A., & Haghi, A. K. (2008). Properties of cementitious composites containing polypropylene fiber waste. Composite Interfaces, 15, 867–879.10.1163/156855408786778294
  • Sajedi, F. (2012). Effect of curing regime and temperature on the compressive strength of cement-slag mortars. Construction & Building Materials, 36, 549–556.10.1016/j.conbuildmat.2012.06.036
  • Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management, 28, 1835–1852.10.1016/j.wasman.2007.09.011
  • Silva, D. A., Betioli, A. M., Gleize, P. J. P., Roman, H. R., Gómez, L. A., & Ribeiro, J. L. D. (2005). Degradation of recycled PET fibers in Portland cement-based materials. Cement & Concrete Research, 35, 1741–1746.10.1016/j.cemconres.2004.10.040
  • Song, P. S., Hwang, S., & Sheu, B. C. (2005). Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cement & Concrete Research, 35, 1546–1550.10.1016/j.cemconres.2004.06.033
  • Söylev, T. A., & Özturan, T. (2014). Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Construction & Building Materials, 73, 67–75.10.1016/j.conbuildmat.2014.09.058
  • Spadea, S., Farina, I., Berardi, V. P., Dentale, F., & Fraternali, F. (2014). Energy dissipation capacity of concretes reinforced with recycled PET fibers. Ingegneria Sismica, 31, 61–70.
  • Spadea, S., Farina, I., Carrafiello, A., & Fraternali, F. (2015). Recycled nylon fibers as cement mortar reinforcement. Construction & Building Materials, 80, 200–209.10.1016/j.conbuildmat.2015.01.075
  • Suji, D., Natesan, S. C., & Murugesan, R. (2007). Experimental study on behaviors of polypropylene fibrous concrete beams. Journal of Zhejiang University-SCIENCE A, 8, 1101–1109.10.1631/jzus.2007.A1101
  • Tolêdo Filho, R. D., Ghavami, K., Sanjuán, M. A., & England, G. L. (2005). Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cement & Concrete Composites, 27, 537–546.10.1016/j.cemconcomp.2004.09.005
  • Yi, S. T., Moon, Y. H., & Kim, J. K. (2005). Long-term strength prediction of concrete with curing temperature. Cement & Concrete Research, 35, 1961–1969.10.1016/j.cemconres.2005.06.010
  • Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction & Building Materials, 93, 180–188.10.1016/j.conbuildmat.2015.05.105
  • Zhang, S., & Zhao, B. (2012). Influence of polypropylene fibre on the mechanical performance and durability of concrete materials. European Journal of Environmental & Civil Engineering, 16, 1269–1277.10.1080/19648189.2012.709681

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.