5,041
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Literature review of modelling approaches for ASR in concrete: a new perspective

&
Pages 1311-1331 | Received 29 Dec 2016, Accepted 21 Jun 2017, Published online: 31 Jul 2017

References

  • Alnaggar, M., Cusatis, G., & Di Luzio, G. (2013). Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) deterioration of concrete structures. Cement and Concrete Composites, 41, 45–59.
  • Alnaggar, M., Di Luzio, G., & Cusatis, G. (2017). Modeling time-dependent behavior of concrete affected by alkali silica reaction in variable environmental conditions. Materials, 10, 417.
  • Anaç, C., Schlangen, E., & Çopuroğlu, O. (2012). Lattice model implementation on alkali silica reaction gel expansion in a reacted concrete medium. In The 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR-3), Cape Town, South Africa.
  • Bangert, F., Kuhl, D., & Meschke, G. (2004). Chemo-hygro-mechanical modelling and numerical simulation of concrete deterioration caused by alkali-silica reaction. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 689–714.
  • Bažant, Z., & Rahimi-Aghdam, S. (2016). Diffusion-controlled and creep-mitigated ASR damage via microplane model. I: Mass concrete. ASCE Journal of Engineering Mechanics, 143(2), 04016108.
  • Bažant, Z., & Steffens, A. (2000). Mathematical model for kinetics of alkali-silica reaction in concrete. Cement and Concrete Research, 30, 419–428.
  • Bažant, Z., Zi, G., & Meyer, C. (2000). Fracture mechanics of ASR in concretes with waste glass particles of different sizes. ASCE Journal of Engineering Mechanics, 126, 226–232.
  • Berra, M., Faggiani, G., Mangialardi, T., & Paolini, A. (2010). Influence of stress restraint on the expansive behaviour of concrete affected by alkali-silica reaction. Cement and Concrete Research, 40, 1403–1409.
  • Capra, B., & Bournazel, J.-P. (1998). Modeling of induced mechanical effects of alkali-aggregate reactions. Cement and Concrete Research, 28, 251–260.
  • Capra, B., & Sellier, A. (2003). Orthotropic modelling of alkali-aggregate reaction in concrete structures: Numerical simulations. Mechanics of Materials, 35(8), 817–830.
  • Charlwood, R. (1994). A review of alkali aggregate in hydro-electric plants and dams. Hydropower Dams, 5, 31–62.
  • Charpin, L. (2013). Modèle micromécanique pour l’étude de l’anisotropie de la réaction alcali-silice (PhD thesis). Université Paris-Est, Paris, France.
  • Charpin, L., & Ehrlacher, A. (2014). Microporomechanics study of anisotropy of ASR under loading. Cement and Concrete Research, 63, 143–157.
  • Comby-Peyrot, I., Bernard, F., Bouchard, P.-O., Bay, F., & Garcia-Diaz, E. (2009). Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction. Computational Materials Science, 46, 1163–1177.
  • Comi, C., Fedele, R., & Perego, U. (2009). A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction. Mechanics of Materials, 41, 210–230.
  • Çopuroğlu, O., & Schlangen, E. (2007). Modelling of effect of ASR on concrete microstructure. Key Engineering Materials, 348, 809–812.
  • Cusatis, G., Mencarelli, A., Pelessone, D., & Baylot, J. (2011). Lattice discrete particle model (LDPM) for failure behavior of concrete. ii: Calibration and validation. Cement and Concrete Composites, 33, 891–905.
  • Dormieux, L., Lemarchand, E., Kondo, D., & Fairbairn, E. (2004). Elements of poro-micromechanics applied to concrete. Materials and Structures, 37, 31–42.
  • Dunant, C., & Scrivener, K. (2010). Micro-mechanical modelling of alkali-silica-reaction induced degradation using the AMIE framework. Cement and Concrete Research, 40, 517–525. Special Issue: ICAAR 13, Trondheim, Norway, June 16-20, 2008.
  • Esposito, R. (2016). The deteriorating impact of alkali-silica reaction on concrete expansion and mechanical properties (PhD thesis). Delft University of Technology, Delft, The Netherlands.
  • Esposito, R., & Hendriks, M. (2012). Degradation of the mechanical properties in ASR-affected concrete: Overview and modeling. In Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS 2012), Aix-en-Provence, France.
  • Esposito, R., & Hendriks, M. A. (2016). A multiscale micromechanical approach to model the deteriorating impact of alkali-silica reaction on concrete. Cement and Concrete Composites, 70, 139–152.
  • Fairbairn, E., Ribero, F., Toledo-Filho, R., Lopes, L., & Silvoso, M. (2004). Smeared cracking FEM simulation of alkali silica expansion using a new macroscopic coupled model. In The 12th International Conference on Alkali-Aggregate Reaction (ICAAR), Beijing, China.
  • Farage, M., Alves, J., & Fairbairn, E. (2004). Macroscopic model of concrete subjected to alkali-aggregate reaction. Cement and Concrete Research, 34, 495–505.
  • Giorla, A. (2013). Modelling of alkali-silica reaction under multi-axial load (PhD thesis). École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  • Giorla, A., Scrivener, K., & Dunant, C. (2015). Influence of visco-elasticity on the stress development induced by alkali-silica reaction. Cement and Concrete Research, 70, April, 1–8.
  • Grimal, E., Sellier, A., Le Pape, Y., & Bourdarot, E. (2008a). Creep, shrinkage, and anisotropic damage in alkali-aggregate reaction swelling mechanism-Part I: A constitutive model. ACI Materials Journal, 105, 227–235.
  • Grimal, E., Sellier, A., Le Pape, Y., & Bourdarot, E. (2008b). Creep, shrinkage, and anisotropic damage in alkali-aggregate reaction swelling-Part II: Identifications of model parameters and applications. ACI Materials Journal, 105, 236–242.
  • ISE. (1992). Structural effects of alkali-silica reaction. Technical guidance on the appraisal of existing structures. London: SETO Ltd.
  • Kim, T., & Olek, J. (2014). Chemical sequence and kinetics of alkali-silica reaction part ii. A thermodynamic model. Journal of American Ceramic Society, 97, 2204–2212.
  • Larive, C. (1998). Apports combin\’{e}s de l exp\’{e}rimentation et de la mod\’{e}lesllisation á la compreh\’{e}nsion de l’alcali-r\’{e}action et de ses effets m\’{e}caniques (PhD thesis). Encole Nationale des Ponts et Chauss\’{e}es, Paris, France.
  • Léger, P., Côté, P., & Tinawi, R. (1996). Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams. Computers & Structures, 60, 601–611.
  • Lemarchand, E. (2001). Contribution de la Micromécanique à l’étude des phénomènes de transport et de couplage poromécanique dans les milieux poreux: Application aux phénomènes de gonflement des géomatériaux (PhD thesis). Ecole des Ponts Paris Tech, Paris, France.
  • Lemarchand, E., Dormieux, L., & Kondo, D. (2003). A micromechanical analysis of the observed kinetics of ASR-induced swelling in concrete. In N. Bicanic, R. De Borst, H. Mang, & G. Meschke (Eds.), Computational Modelling of Concrete Structures (EURO-C) (pp. 483–490). St. Johann im Pongau, Austia: A A Balkema Publisher, Rotterdam.
  • Lemarchand, E., Dormieux, L., & Ulm, F.-J. (2005). Micromechanics investigation of expansive reactions in chemoelastic concrete. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 363, 2581–2602.
  • Li, K., & Coussy, O. (2002). Concrete ASR degradation: From material modelling to structure assessment. Concrete Science Engineering, 4, 35–46.
  • Li, K., & Coussy, O. (2004). Numerical assessment and prediction method for chemo-mechanical deterioration of ASR-affected strucures. Canadian Journal of Civil Engineering, 31, 432–439.
  • Liuaudat, J., López, C., & Carol, I. (2014). Diffusion-reaction model for ASR: Formulation and 1D numerical implementation. In N. Bićanić, H. Mang, G. Meschke, & R. de Borst (Eds.), Computational Modelling of Concrete Structures (EURO-C). St Anton am Alberg: CRC Press, Taylor & Francis Group.
  • Malla, S., & Wieland, M. (1999). Analysis of an arch-gravity dam with a horizontal crack. Computers & Structures, 72, 267–278.
  • Multon, S. (2004). Evaluation expèrimental et thèorique des effets mècaniques de l’alcali-rèaction sur des structures modéles (PhD thesis). Universitè de Marne-la-Vallèe (in collaboration with LCPC-EDF), Champs sur Marne, France.
  • Multon, S., & Sellier, A. (2016). Multi-scale analysis of alkali-silica reaction (ASR): Impact of alkali leaching on scale effects affecting expansin tests. Cement and Concrete Research, 81, 122–133.
  • Multon, S., Sellier, A., & Cyr, M. (2009). Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion. Cement and Concrete Research, 39, 490–500.
  • Nguyen, M., Timothy, J., & Meschke, G. (2014). Numerical analysis of multiple ion species diffusion and alkali-silica reaction in concrete. In N. Bićanić, H. Mang, G. Meschke, & R. de Borst (Eds.), Computational Modelling of Concrete Structures (EURO-C). St Anton am Alberg: CRC Press, Taylor & Francis Group.
  • Pan, J., Feng, Y., Wang, J., Sun, Q., Zhang, C., & Owen, D. (2012). Modeling of alkali-silica reaction in concrete: A review. Frontiers of Structural and Civil Engineering, 6(1), 1–18.
  • Pesavento, F., Gawin, D., Wyrzykowski, M., Schrefler, B., & Simoni, L. (2012). Modeling alkali-silica reaction in non-isothermal, partially saturated cement based materials. Computer Methods in Applied Mechanics and Engineering, 225, 95–115.
  • Pignatelli, R., Comi, C., & Monteiro, P. (2013). A coupled mechanical and chemical damage model for concrete affected by alkali-silica reaction. Cement and Concrete Research, 53, 196–210.
  • Poyet, S., Sellier, A., Capra, B., Foray, G., Torrenti, J.-M., Cognon, H., & Bourdarot, E. (2007). Chemical modelling of alkali silica reaction: Influence of the reactive aggregate size distribution. Materials and Structures, 40, 229–239.
  • Puatatsananon, W., & Saouma, V. (2013). Chemo-mechanical micromodel for alkali-silica reaction. ACI Materials Journal, 110, 67–77.
  • Rahimi-Aghdam, S., Bažant, Z., & Caner, C. (2016). Diffusion-contrlled and creep-mitigated ASR damage via microplane model. ii: Material degradation, drying, and verification. ASCE Journal of Engineering Mechanics, 143(2), 04016108.
  • Reinhardt, H., & Mielich, O. (2011). A fracture mechanics approach to the crack formation in alkali-sensitive grains. Cement and Concrete Research, 41, 255–262.
  • Sanchez, L., Fournie, B., Jolin, M., & Duchesne, J. (2015). Reilable quantification of AAR damage through assessment of Damage Rating Index (DRI). Cement and Concrete Research, 67, 74–92.
  • Sanchez, L., Multon, S., Sellier, A., Cyr, M., Fournier, B., & Jolin, M. (2014). Comparative study of a chemo-mechanical modeling for alkali silica reaction (ASR) with experimental evidences. Construction and Building Materials, 72, 301–315.
  • Saouma, V. (2013). Numerical modeling of AAR. London: CRC Press, Taylor and Francis group.
  • Saouma, V., & Perotti, L. (2006). Constitutive model for alkali-aggregate reactions. ACI Materials Journal, 103, 194–202.
  • Saouma, V., & Xi, Y. (2004). Literature review of alkali aggregate reactions in concrete dams (Technical Report CU/SA-XI-2004/001). Swiss Federal Office for Water and Geology FOWG.
  • Schlangen, E., & Copuroğlu, O. (2010). Modeling of expansion and cracking due to ASR with a 3D lattice model. In Fracture Mechanics of Concrete and Concrete Structures (FramCos7), Seoul, Korea: Korea Concrete Institute.
  • Schlangen, E., & Van Breugel, K. (2005). Prediction of tensile strength reduction of concrete due to ASR. In Third International Conference on Construction Materials, Performance, Innovations and Structural Implications (ConMat’5), Vancouver, Canada.
  • Schlangen, E., & Van Mier, J. (1992). Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement and Concrete Composites, 14, 105–118.
  • Suwito, A., Jin, W., Xi, Y., & Meyer, C. (2002). A mathematical model for the pessimum size effect of ASR in concrete. Concrete Science and Engineering, 4, 23–34.
  • Swamy, R. N. (1992). The alkali-silica reaction in concrete. New York, NY: Taylor & Francis.
  • Thompson, G., Charlwood, R., Steele, R., & Curtis, D. (1994). Mactaquac generating station intake and spillway remedial measures. In The 18th International Congress on Large Dams (Vol. 1, pp. 347–368). Durban, South Africa.
  • Ulm, F.-J., Coussy, O., Li, K., & Larive, C. (2000). Thermo-chemo-mechanics of ASR expansion in concrete structures. ASCE Journal of Engineering Mechanics, 126, 233–242.
  • Ulm, F.-J., Petrson, M., & Lemarchand, E. (2002). Is ASR-expansion caused by chemoporoplastic dilatation? Computer Science and Engineering, 4, 47–55.
  • Winnicki, A., & Pietruszczak, S. (2008). On mechanical degradation of reinforced concrete affected by alkali-silica reaction. Journal of Engineering Mechanics, 134, 611–627.
  • Winnicki, A., Serega, S., & Norys, F. (2014). Chemoplastic modelling of alkali-silica reaction (ASR). In Computational Modelling of Concrete Structures (EURO-C) (Vol. 2, pp. 765–774). St. Anton am Arlberg, Austria: CRC Press.
  • Wu, T., Temizer, I., & Wriggers, P. (2014). Multiscale hydro-thermo-chemo-mechanical coupling: Application to alkali-silica reaction. Computational Materials Science, 84, 381–395.