336
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Non-linear finite element analyses applicable for the design of large reinforced concrete structures

, , &
Pages 1381-1403 | Received 24 Jan 2017, Accepted 15 Jun 2017, Published online: 25 Jul 2017

References

  • Bark, H., Markou, G., Mourlas, C., & Papadrakakis, M. (2016, June 5--10). Seismic assessment of a 5-storey retrofitted RC building. ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece.
  • Barlow, J. (1976). Optimal stress locations in finite element models. International Journal for Numerical Methods in Engineering, 10, 243–251.
  • Barlow, J. (1989). More on optimal stress points -- Reduced integration, element distortions and error estimations. International Journal for Numerical Methods in Engineering, 28, 1487–1504.
  • Bathe, K.-J., Walczak, J., Welch, A., & Mistry, N. (1989). Nonlinear analysis of concrete structures. Computers & Structures, 32, 563–590.
  • Bazant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16, 155–177.
  • Bédard, C., & Kotsovos, M. D. (1985). Application of NLFEA to concrete structures. Journal of Structural Engineering, 111, 2691–2707.
  • Belletti, B., Damoni, C., den Uijl, J. A., Hendriks, M. A. N., & Walraven, J. (2013). Shear resistance evaluation of prestressed concrete bridge beams: Fib model code 2010 guidelines for level IV approximations. Structural Concrete, 14, 242–249.
  • Belletti, B., Damoni, C., & Hendriks, M. A. N. (2011). Development of guidelines for nonlinear finite element analyses of existing reinforced and pre-stressed beams. European Journal of Environmental and Civil Engineering, 15, 1361–1384.
  • Belletti, B., Damoni, C., Hendriks, M. A. N., & de Boer, A. (2014). Analytical and numerical evaluation of the design shear resistance of reinforced concrete slabs. Structural Concrete, 15, 317–330.
  • Belletti, B., Pimentel, M., Scolari, M., & Walraven, J. C. (2015). Safety assessment of punching shear failure according to the level of approximation approach. Structural Concrete, 16, 366–380.
  • Bergan, P. G., & Holand, I. (1979). Nonlinear finite element analysis of concrete structures. Computer Methods in Applied Mechanics and Engineering, 17, 443–467.
  • Brekke, D. E., Åldstedt, E., & Grosch, H. (1994). Design of offshore concrete structures based on postprocessing of results from finite element analysis (FEA): Methods, limitations and accuracy. In Proceedings of the Fourth (1994) International Offshore and Polar Engineering Conference, Osaka, Japan.
  • Bresler, B., & Scordelis, A. C. (1963). Shear strength of reinforced concrete beams. Journal of the American Concrete Institute, 60, 51–74.
  • CEN. (2006). EN ISO 19903: Petroleum and natural gas industries. Fixed concrete offshore structures. European Committee for Standardization. Brussels.
  • Cervenka, V., & Gerstle, K. H. (1972). Inelastic analysis of reinforced concrete panels: Experimental verification and application. IABSE Publications, 32, 31–45.
  • Cotsovos, D. M. (2004). Numerical modelling of structural concrete under dynamic (earthquake and impact) loading (PhD thesis). London: Imperial College London.
  • Cotsovos, D. M., & Pavlovic, M. N. (2006). Simplified FE model for RC structures under earthquakes. Proceedings of the ICE -- Structures and Buildings, 159, 87–102.
  • de Borst, R., & Nauta, P. (1985). Non-orthogonal cracks in a smeared finite element model. Engineering Computations, 2, 35–46.
  • Engen, M., Hendriks, M. A. N., Köhler, J., Øverli, J. A., & Åldstedt, E. (2017). A quantification of the modelling uncertainty of non-linear finite element analyses of large concrete structures. Structural Safety, 64, 1–8.
  • Engen, M., Hendriks, M. A. N., Øverli, J. A., & Åldstedt, E. (2015). Solution strategy for non-linear finite element analyses of large reinforced concrete structures. Structural Concrete, 16, 389–397.
  • Ernst, G. C., Smith, G. M., Riveland, A. R., & Pierce, D. N. (1973). Basic reinforced concrete frame performance under vertical and lateral loads. ACI Journal, 70, 261–269.
  • fib. (2008). Bulletin 45: Practitioner’s guide to finite element modelling of reinforced concrete structures. International Federation for Structural Concrete (fib), Lausanne.
  • fib. (2009). Bulletin 50: Concrete structures for oil & gas fields. International Federation for Structural Concrete (fib), Lausanne.
  • fib. (2013). fib model code for concrete structures 2010. Berlin: Ernst & Sohn.
  • González Vidosa, F. (1989). Three-dimensional finite element analysis of structural concrete under static loading (PhD thesis). London: University of London.
  • González Vidosa, F., Kotsovos, M. D., & Pavlovic, M. N. (1988). On the numerical instability of the Smeared-Crack approach in the non-linear modelling of concrete structures. Communications in Applied Numerical Methods, 4, 799–806.
  • González Vidosa, F., Kotsovos, M. D., & Pavlovic, M. N. (1991a). Three-dimensional non-linear finite-element model for structural concrete. Part 1: Main features and objectivity study. Proceedings of the ICE -- Structures and Buildings, 91, 517–544.
  • González Vidosa, F., Kotsovos, M. D., & Pavlovic, M. N. (1991b). Three-dimensional non-linear finite-element model for structural concrete. Part 2: Generality study. Proceedings of the ICE -- Structures and Buildings, 91, 545–560.
  • Hendriks, M. A. N., de Boer, A., & Belletti, B. (2017). Guidelines for nonlinear finite element analysis of concrete structures. Rijkswaterstaat Centre for Infrastructure (Report No. RTD:1016–1:2017).
  • Jelic, I., Pavlovic, M. N., & Kotsovos, M. D. (2004). Performance of structural-concrete members under sequential loading and exhibiting points of inflection. Computers and Concrete, 1, 99–113.
  • Kotsovos, M. D. (1979a). A mathematical description of the strength properties of concrete under generalized stress. Magazine of Concrete Research, 31, 151–158.
  • Kotsovos, M. D. (1979b). Fracture processes of concrete under generalised stress states. Materials and Structures, 12, 431–437.
  • Kotsovos, M. D. (1980). A mathematical model of the deformational behavior of concrete under generalised stress based on fundamental material properties. Materials and Structures, 13, 289–298.
  • Kotsovos, M. D. (1982). A fundamental explanation of the behaviour of reinforced concrete beams in flexure based on the properties of concrete under multiaxial stress. Materials and Structures, 15, 529–537.
  • Kotsovos, M. D. (1984). Concrete. A brittle fracturing material. Materials and Structures, 17, 107–115.
  • Kotsovos, M. D., & Pavlovic, M. N. (1995). Structural concrete: Finite-element analysis for limit-state design. London: Thomas Telford.
  • Kotsovos, M. D., Pavlovic, M. N., & Cotsovos, D. M. (2008). Characteristic features of concrete behaviour: Implications for the development of an engineering finite-element tool. Computers and Concrete, 5, 243–260.
  • Kotsovos, M. D., & Spiliopoulos, K. V. (1998). Modelling of crack closure for finite-element analysis of structural concrete. Computers & Structures, 69, 383–398.
  • Lefas, I. D., Kotsovos, M. D., & Ambraseys, N. N. (1990). Behaviour of reinforced concrete structural walls: Strength, deformation characteristics, and failure mechanism. ACI Structural Journal, 87, 23–31.
  • Lykidis, G. C., & Spiliopoulos, K. V. (2008). 3D solid finite-element analysis of cyclically loaded RC structures allowing embedded reinforcement slippage. Journal of Structural Engineering, 134, 629–638.
  • Markou, G., & Papadrakakis, M. (2013). Computationally efficient 3D finite element modeling of RC structures. Computers and Concrete, 12, 443–498.
  • Markou, G., Sabouni, R., Suleiman, F., & El-Chouli, R. (2015). Full-scale modeling of the soil-structure interaction problem through the use of hybrid models (HYMOD). International Journal of Current Engineering and Technology, 5, 885–899.
  • Mourlas, C., Papadrakakis, M., & Markou, G. (2016, June 5--10). Accurate and efficient modeling for the cyclic behavior of rc structural members. ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece.
  • Norges Standardiseringsforbund. (2003). NS 3473.E: Design of concrete structures. Design and detailing rules. 6th ed. Oslo: Norges Standardiseringsforbund.
  • Øverli, J. A. (2016). A density-dependent failure criterion for concrete. Construction and Building Materials, 124, 566–574.
  • Pimentel, M., Brühwiler, E., & Figueiras, J. A. (2014). Safety examination of existing concrete structures using the global resistance safety factor concept. Engineering Structures, 70, 130–143.
  • Roache, P. J. (1998). Verification of codes and calculations. AIAA Journal, 36, 696–702.
  • Rots, J. G. (1988). Computational modeling of concrete fracture (PhD thesis). Delft, the Netherlands: Technische Universiteit Delft.
  • Rots, J. G., & Blaauwendraad, J. (1989). Crack models for concrete: Discrete or smeared? Fixed, multidirectional or rotating? Heron, 34, 1–59.
  • Schlune, H., Plos, M., & Gylltoft, K. (2012). Safety formats for non-linear analysis of concrete structures. Magazine of Concrete Research, 64, 563–574.
  • Simo, J. C., Armero, F., & Taylor, R. L. (1993). Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer Methods in Applied Mechanics and Engineering, 110, 359–386.
  • Simo, J. C., & Rifai, M. S. (1990). A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29, 1595–1638.
  • Spiliopoulos, K. V., & Lykidis, G. Ch. (2006). An efficient three-dimensional solid finite element dynamic analysis of reinforced concrete structures. Earthquake Engineering and Structural Dynamics, 35, 137–157.
  • Vecchio, F. J. (2001). Non-linear finite element analysis of reinforced concrete: At the crossroads? Structural Concrete, 2, 201–212.
  • Vecchio, F. J., & Balopoulou, S. (1990). On the nonlinear behaviour of reinforced concrete frames. Canadian Journal of Civil Engineering, 17, 698–704.
  • Vecchio, F. J., & Emara, M. B. (1992). Shear Deformations in reinforced concrete frames. ACI Structural Journal, 89, 46–56.
  • Willam, K. J., & Warnke, E. P. (1974). Constitutive model for the triaxial behaviour of concrete. IABSE Reports of the Working Commissions, 19, 1–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.