513
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Onset of suffusion in upward seepage under isotropic and anisotropic stress conditions

, , , , & ORCID Icon
Pages 1520-1534 | Received 13 Jan 2017, Accepted 19 Jul 2017, Published online: 31 Jul 2017

References

  • Åberg, B. (1993). Washout of grains from filtered sand and gravel materials. Journal of Geotechnical Engineering, 119, 36–53. doi:10.1061/(ASCE)0733-9410(1993)119:1(36)
  • Ahmed, A. A. (2012). Stochastic analysis of seepage under hydraulic structures resting on anisotropic heterogeneous soils. Journal of Geotechnical and Geoenvironmental Engineering, 139, 1001–1004. doi:10.1061/(ASCE)GT.1943-5606.0000813
  • ASTM, D. (2007). Standard test method for particle-size analysis of soils. Annual Book of ASTM Standards. Philadelphia, PA: American Society for Testing and Materials (ASTM)
  • van Beek, V. M., Bezuijen, A., Sellmeijer, J. B., & Barends, F. B. J. (2014). Initiation of backward erosion piping in uniform sands. Géotechnique, 64, 927–941. doi:10.1680/geot.13.P.210
  • Bendahmane, F., Marot, D., & Alexis, A. (2008). Experimental parametric study of suffusion and backward erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134, 57–67. doi:10.1061/(ASCE)1090-0241(2008)134:1(57)
  • Brivois, O., Bonelli, S., & Borghi, R. (2007). Soil erosion in the boundary layer flow along a slope: A theoretical study. European Journal of Mechanics, B/Fluids, 26, 707–719. doi:10.1016/j.euromechflu.2007.03.006
  • Chang, D. S., & Zhang, L. M. (2011). A stress-controlled erosion apparatus for studying internal erosion in soils. Geotechnical Testing Journal, 34(6), 1–11. doi:10.1520/GTJ103889
  • Chang, D. S., & Zhang, L. M. (2013). Critical hydraulic gradients of internal erosion under complex stress states. Journal of Geotechnical and Geoenvironmental Engineering, 139, 1454–1467. doi:10.1061/(ASCE)GT.1943-5606.0000871
  • Cheng, N.-S. (2004). Analysis of velocity lag in sediment-laden open channel flows. Journal of Hydraulic Engineering, 130, 657–666. doi:10.1061/(ASCE)0733-9429(2004)130:7(657)
  • El Shamy, U., & Aydin, F. (2008). Multiscale modeling of flood-induced piping in river levees. Journal of Geotechnical and Geoenvironmental Engineering, 134, 1385–1398. doi:10.1061/(ASCE)1090-0241(2008)134:9(1385)
  • Fell, R., & Fry, J. J. (2007). Internal erosion of dams and their foundations: Selected papers from the workshop on internal erosionand piping of dams and their foundations, Aussois, France, 25–27 April 2005. London: Taylor & Francis Group.
  • Fleshman, M. S., & Rice, J. D. (2013). Constant gradient piping test apparatus for evaluation of critical hydraulic conditions for the initiation of piping. Geotechnical Testing Journal, 36(6), 1–13. doi:10.1520/GTJ20130066
  • Fleshman, M. S., & Rice, J. D. (2014). Laboratory modeling of the mechanisms of piping erosion initiation. Journal of Geotechnical and Geoenvironmental Engineering, 140(6), 04014017. doi:10.1061/(asce)gt.1943-5606.0001106
  • Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37, 1000–1024. doi:10.1139/t00-030
  • Hewlett, H., Brown, A. J., & Gosden, J. D. (2008). Defra research into internal erosion. In Ensuring reservoir safety into the future: Proceedings of the 15th Conference of the British Dam Society at the University of Warwick from 10–13 September 2008 (pp. 39–50). London: Thomas Telford Publishing.
  • Jaky, J. (1948). Pressure in silos. In Proceedings of the 2nd international conference on soil mechanics and foundation engineering (Vol. 1, pp. 103–107).
  • Kenney, T. C., & Lau, D. (1985). Internal stability of granular filters. Canadian Geotechnical Journal, 22, 215–225.10.1139/t85-029
  • Kimiaghalam, N., Clark, S. P., & Ahmari, H. (2016). An experimental study on the effects of physical, mechanical, and electrochemical properties of natural cohesive soils on critical shear stress and erosion rate. International Journal of Sediment Research, 31(1), 1–15. doi:10.1016/j.ijsrc.2015.01.001
  • Kovacs, G. (1981). Seepage hydraulics. Amesterdam: Elsevier.
  • Ladd, R. S. (1978). Preparing test specimens using under compaction. Geotechnical Testing Journal, 1, 16–23.
  • Léonard, J., & Richard, G. (2004). Estimation of runoff critical shear stress for soil erosion from soil shear strength. Catena, 57, 233–249. doi:10.1016/j.catena.2003.11.007
  • Li, M. (2008). Seepage induced instability in widely graded soils. Vancouver, BC: University of British Columbia.
  • Liang, Y., Zeng, C., Wang, J.-J., Liu, M., Yeh, T.-C. J., & Zha, Y. (2017). Constant gradient erosion apparatus for appraisal of piping behavior in upward seepage flow. Geotechnical Testing Journal, 40, 630–642. doi:10.1520/GTJ20150282
  • Luo, Y. L., Jin, X., Li, X., Zhan, M. L., & Sheng, J. C. (2013). A new apparatus for evaluation of contact erosion at the soil-structure interface. Geotechnical Testing Journal, 36, 256–263. doi:10.1520/GTJ20120094
  • Luo, Y. L., Qiao, L., Liu, X. X., Zhan, M. L., & Sheng, J. C. (2013). Hydro-mechanical experiments on suffusion under long-term large hydraulic heads. Natural Hazards, 65, 1361–1377. doi:10.1007/s11069-012-0415-y
  • Marot, D., Rochim, A., Nguyen, H. H., Bendahmane, F., & Sibille, L. (2016). Assessing the susceptibility of gap-graded soils to internal erosion: Proposition of a new experimental methodology. Natural Hazards, 1–24. doi:10.1007/s11069-016-2319-8
  • McDougall, J., Kelly, D., & Barreto, D. (2013). Particle loss and volume change on dissolution: Experimental results and analysis of particle size and amount effects. Acta Geotechnica, 8, 619–627. doi:10.1007/s11440-013-0212-0
  • Moffat, R., & Fannin, R. J. (2011). A hydromechanical relation governing internal stability of cohesionless soil. Canadian Geotechnical Journal, 48, 413–424. doi:10.1139/T10-070
  • Moffat, R., & Herrera, P. (2014). Hydromechanical model for internal erosion and its relationship with the stress transmitted by the finer soil fraction. Acta Geotechnica, 10, 643–650. doi:10.1007/s11440-014-0326-z
  • Ojha, C. S. P., Singh, V. P., & Adrian, D. D. (2003). Determination of critical head in soil piping. Journal of Hydraulic Engineering, 129, 511–518. doi:10.1061/(asce)0733-9429(2003)129:7(511)
  • Richards, K. S., & Reddy, K. R. (2010). True triaxial piping test apparatus for evaluation of piping potential in earth structures. Geotechnical Testing Journal, 33(1), 1–13. doi:10.1520/GTJ102246
  • Richards, K. S., & Reddy, K. R. (2012). Experimental investigation of initiation of backward erosion piping in soils. Géotechnique, 62, 933–942. doi:10.1680/geot.11.P.058
  • Saghaee, G., Mousa, A. A., & Meguid, M. A. (2016). Experimental evaluation of the performance of earth levees deteriorated by wildlife activities. Acta Geotechnica, 11, 83–93. doi:10.1007/s11440-015-0373-0
  • Sedghi-asl, M., Parvizi, M., & Armin, M. (2015). Internal erosion under spillway rested on an embankment dam. International Journal of Mining & Geo-Engineering, 49, 269–279.
  • Sellmeijer, H., de la Cruz, J. L., van Beek, V. M., & Knoeff, H. (2011). Fine-tuning of the backward erosion piping model through small-scale, medium-scale and IJkdijk experiments. European Journal of Environmental and Civil Engineering, 15, 1139–1154. doi:10.1080/19648189.2011.9714845
  • Skempton, A. W., & Brogan, J. M. (1994). Experiments on piping in sandy gravels. Geotechnique, 44, 449–460.10.1680/geot.1994.44.3.449
  • Terzaghi, K. (1929). Effect of minor geologic details on the safety of dams (pp. 31–46). American Institute of Mining and Metallurgical Engineers.
  • Tomlinson, S. S., & Vaid, Y. P. (2000). Seepage forces and confining pressure effects on piping erosion. Canadian Geotechnical Journal, 37(1), 1–13. doi:10.1139/cgj-37-1-1
  • Wan, C. F., & Fell, R. (2004). Laboratory tests on the rate of piping erosion of soils in embankment dams. Geotechnical Testing Journal, 27, 295–303. doi:10.1520/GTJ11903
  • Wilhelm, T., & Wilmański, K. (2002). On the onset of flow instabilities in granular media due to porosity inhomogeneities. International Journal of Multiphase Flow, 28, 1929–1944. doi:10.1016/S0301-9322(02)00105-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.