242
Views
3
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation of macro-meso mechanical behaviours of sandstone containing a single open fissure under uniaxial compression

, , &
Pages s99-s113 | Received 19 May 2017, Accepted 12 Sep 2017, Published online: 27 Sep 2017

References

  • Bobet, A., & Einstein, H. H. (1998). Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences, 35, 863–888.10.1016/S0148-9062(98)00005-9
  • Chen, X., Liao, Z., & Peng, X. (2012). Deformability characteristics of jointed rock masses under uniaxial compression. International Journal of Mining Science and Technology, 22, 213–221.10.1016/j.ijmst.2011.08.012
  • Chen, X., Liao, Z., & Peng, X. (2013). Cracking process of rock mass models under uniaxial compression. Journal of Central South University, 20, 1661–1678.10.1007/s11771-013-1660-2
  • Fortune, S. (1986). A sweepline algorithm for Voronoi diagrams. In Proceedings of the second annual symposium on computational geometry (pp. 313–322). New York, NY: ACM.
  • Goodman, R. E., Taylor, R. L., & Brekke, T. L. (1968). A model for the mechanics of jointed rocks. Journal of Soil Mechanics & Foundations Division, 99, 637–660.
  • Guo, Y., Wong, R. H. C., & Zhu, W. (2007). Study on fracture pattern of open surface-flaw in gabbro. Chinese Journal of Rock Mechanics and Engineering, 26, 525–531.
  • Huang, Y. H., Yang, S. Q., & Zhao, J. (2016). Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures. Rock Mechanics and Rock Engineering, 49(12), 4711–4729.10.1007/s00603-016-1081-2
  • Hudson, J. A., & Harrison, J. P. (2000). Engineering rock mechanics – an introduction to the principles. Amsterdam, NL: Elsevier.
  • Kranz, R. L. (1983). Microcracks in rocks: A review. Tectonophysics, 100, 449–480.10.1016/0040-1951(83)90198-1
  • Sagong, M., & Bobet, A. (2002). Coalescence of multiple flaws in a rock-model material in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 39, 229–241.10.1016/S1365-1609(02)00027-8
  • Smith, I. M., Griffiths, D. V., & Margetts, L. (2013). Programming the finite element method. New York, NY: Wiley.
  • Taylor, L. M., Chen, E. P., & Kuszmaul, J. S. (1986). Microcrack-induced damage accumulation in brittle rock under dynamic loading. Computer Methods in Applied Mechanics and Engineering, 55, 301–320.10.1016/0045-7825(86)90057-5
  • Wong, L. N. Y., & Einstein, H. H. (2009). Crack coalescence in molded gypsum and carrara marble: Part 1. Macroscopic observations and interpretation. Rock Mechanics and Rock Engineering, 42, 475–511.10.1007/s00603-008-0002-4
  • Wong, R. H., & Chau, K. T. (1998). Crack coalescence in a rock-like material containing two cracks. International Journal of Rock Mechanics and Mining Sciences, 35(2), 147–164.10.1016/S0148-9062(97)00303-3
  • Yang, S. Q., & Huang, Y. H. (2014). Experimental and particle flow simulation on crack coalescence behavior of sandstone specimens containing double holes and a single fissure. Journal of Basic Science and Engineering, 22, 584–596.
  • Yang, S. Q., & Jing, H. W. (2011). Strength failure and crack coalescence behaviour of brittle sandstone samples containing a single fissure under uniaxial compression. International Journal of Fracture, 168, 227–250.10.1007/s10704-010-9576-4
  • Yang, S. Q., Liu, X. R., & Jing, H. W. (2013). Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 63, 82–92.10.1016/j.ijrmms.2013.06.008
  • Yang, S. Q., Yang, D. S., Jing, H. W., Li, ​Y. H., & Wang, S. Y. (2012). An experimental study of the fracture coalescence behavior of brittle sandstone specimens containing three fissures. Rock Mechanics and Rock Engineering, 45, 583–606.10.1007/s00603-011-0208-8
  • Yao, C., Jiang, Q. H., & Shao, J. F. (2015a). Numerical simulation of damage and failure in brittle rocks using a modified rigid block spring method. Computers and Geotechnics, 64, 48–60.10.1016/j.compgeo.2014.10.012
  • Yao, C., Jiang, Q. H., & Shao, J. F. (2015b). A numerical analysis of permeability evolution in rocks with multiple fractures. Transport in Porous Media, 108(2), 289–311.10.1007/s11242-015-0476-y
  • Yao, C., Jiang, Q. H., Shao, J. F., & Zhou, C. B. (2016). A discrete approach for modeling damage and failure in anisotropic cohesive brittle materials. Engineering Fracture Mechanics, 155, 102–118.10.1016/j.engfracmech.2016.01.012
  • Yao, C., Shao, J. F., Jiang, Q. H., & Zhou, C. B. (2017). Numerical study of excavation induced fractures using an extended rigid block spring method. Computers and Geotechnics, 85, 368–383.10.1016/j.compgeo.2016.11.023
  • Zhang, X. P., & Wong, L. N. Y. (2012). Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bonded-particle model approach. Rock Mechanics and Rock Engineering, 45, 711–737.
  • Zhang, X. P., & Wong, L. N. Y. (2013). Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression. International Journal of Fracture, 180(1), 93–110.10.1007/s10704-012-9803-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.