176
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

On the evaluation of the structure in sedimentary soils

Pages 440-455 | Received 10 Jan 2017, Accepted 17 Oct 2017, Published online: 14 Nov 2017

References

  • ASTM. (2010). Standard test method for liquid limit, plastic limit and plasticity index of soils. Testing designation D 4318, West Conshohocken, PA: Author.
  • Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Géotechnique, 40, 329–378.10.1680/geot.1990.40.3.329
  • Cerato, B., & Lutenegger, A. J. (2004). Determining intrinsic compressibility of fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 130, 872–877.10.1061/(ASCE)1090-0241(2004)130:8(872)
  • Chandler, R. J. (2000). Clay sediments in depositional basins: The geotechnical cycle. Quarterly Journal of Engineering Geology and Hydrogeolog, 33, 7–39.10.1144/qjegh.33.1.7
  • Chandler, R. J. (2010). Stiff sedimentary clays: Geological origins and engineering properties. Géotechnique, 60, 891–902.10.1680/geot.07.KP.001
  • Cooling, L. F., & Skempton, A. W. (1941). Some experiments on the consolidation of clay. Journal of Institute of Civil Engineering, 16, 381–398.10.1680/ijoti.1941.13673
  • Favre, J.-L., & Hattab, M. (2008). Analysis of the ‘biarez–favre’ and ‘burland’ models for the compressibility of remoulded clays. Comptes Rendus Géosciences, 340, 20–27.10.1016/j.crte.2007.11.004
  • Hattab, M., & Favre, J.-L. (2010). Analysis of the experimental compressibility of deep water marine sediments from the Gulf of Guinea. Marine and Petroleum Geology, 27, 486–499.10.1016/j.marpetgeo.2009.11.004
  • Hong, Z.-S., Yin, J., & Cui, Y.-J. (2010). Compression behaviour of reconstituted soils at high initial water contents. Géotechnique, 60, 691–700.10.1680/geot.09.P.059
  • ISO 14688-2. (2004). Geotechnical investigation and testing – identification and classification of soil – Part 2: Principles for a classification (pp. 1–13). Brussels: CEN.
  • Kumar, G. V., & Muir Wood, D. (1999). Fall cone and compression test on clay-gravel mixtures. Géotechnique, 49, 727–739.10.1680/geot.1999.49.6.727
  • Lancellotta, R. (2004). Geotecnica (3rd ed.). (p. 481). Bologna: Zanichelli.
  • Liu, M., Zhuang, Z., & Horpibulsuk, S. (2013). Estimation of the compression behaviour of recostituted clays. Engineering Geology, 167, 84–94.10.1016/j.enggeo.2013.10.015
  • Locat, J., & Lefebvre, G. (1982). The compressibility and sensitivity of an artificially sedimented clay soil: The Grande-Baleine marine clay, Québec, Canada. Marine Geotechnology, 6, 1–28.
  • Mitchell, J. K. (1993). Fundamentals of soil behavior (2nd ed., p. 437). New York, NY: Wiley.
  • Nagaraj, T. S., Panadian, N. S., & Narasimha Raju, P. S. R. (1993). Stress state-permeability relationships for fine-grained soils. Géotechnique, 43, 333–336.10.1680/geot.1993.43.2.333
  • Nagaraj, T. S., Pandian, N. S., Narasimha Raju, P. S. R., & Vishnu Bhushan, T. (1995). Stress-state-time-permeability relationships for saturated soils. In Proceedings of International Symposium on Compression and Consolidation of Clayey Soils, Hiroshima, (Vol. 1, pp. 537–542).
  • Nagaraj, T. S., & Srinivasa Murthy, B. R. (1983). Rationalization of Skempton’s compressibility equation. Géotechnique, 33, 433–443.
  • Nagaraj, T. S., & Srinivasa Murthy, B. R. (1986). A critical reappraisal of compression index equation. Géotechnique, 36, 27–32.10.1680/geot.1986.36.1.27
  • Polidori, E. (2015a). On the intrinsic compressibility of common clayey soils. European Journal of Environmental and Civil Engineering, 19, 27–47. doi:10.1080/19648189.2014.926295
  • Polidori, E. (2015b). Proposal for a new classification of common inorganic soils for engineering purposes. Geotechnical and Geological Engineering, 33, 1569–1579. doi:10.1007/s10706-015-9922-4
  • Polidori, E. (2007). Relationship between the atterberg limits and clay content. Soils and Foundations, 47, 887–896.10.3208/sandf.47.887
  • Quigley, R. M., & Thompson, C. D. (1966). The fabric of anisotropically consolidated sensitive marine clay. Canadian Geotechnical Journal, 3, 61–73.10.1139/t66-008
  • Skempton, A. W. (1944). Notes on the compressibility of clays. Quarterly Journal of Geological Society, 100, 119–135.10.1144/GSL.JGS.1944.100.01-04.08
  • Skempton, A. W. (1970). The consolidation of clays by gravitational compaction. Quarterly Journal of the Geological Society, 125, 373–411.
  • Srinivasa Murthy, B. R., Nagaraj, T. S., & Bindumadhava, H. (1987). Influence of coarse particles on compressibility of soils. In Prediction and Performance in Geotechnical Engineering (pp. 195–200). Calgary: Balkema.
  • Terzaghi, K. (1936). Stability of slopes in natural clay. Proceeding Harvard Conference on Soil Mechanics, I, 161–165.
  • Terzaghi, K. (1941). Undisturbed clay samples and undisturbed clays. Journal Boston Society of Civil Engineering, 28, 211–231.
  • Tiwari, B., & Ajmera, B. (2012). New correlation equations for compression index of remoulded clays. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 138, 757–762.10.1061/(ASCE)GT.1943-5606.0000639
  • Tsuchida, T., & Gomyo, M. (1995). Unified model of e−log p relationship with the consideration of the effect of initial void ratio. In Proceedings of International Symposium on Compression and Consolidation of Clayey Soils, , Hiroshima, (Vol 1, pp. 379–384).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.