616
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Advances in micromechanical modelling of asphalt mixtures: a review

Pages 583-602 | Received 30 May 2016, Accepted 24 Nov 2017, Published online: 27 Dec 2017

References

  • Abbas, A. R. (2004). Simulation of the micromechanical behavior of asphalt mixtures using the discrete-element method ( PhD dissertation). Department of Civil and Environmental Engineering, Washington State University, Pullman, WA.
  • Abbas, A., Masad, E., Papagiannakis, T., & Harman, T. (2007). Micromechanical modeling of the viscoelastic behavior of asphalt mixtures using the discrete-element method. International Journal of Geomechanics, 7(2), 131–139.10.1061/(ASCE)1532-3641(2007)7:2(131)
  • Abu Al-Rub, R. K., Darabi M. K., Little D. N., Masad E. A. (2010). A micro-damage healing model that improves prediction of fatigue life in asphalt mixes. International Journal of Engineering Science, 48, 966–990.10.1016/j.ijengsci.2010.09.016
  • Adhikari, S. (2008). Simulation of mechanical behavior of asphalt concrete: Twodimensional and three-dimensional micromechanics-based discrete element models (PhD thesis). Michigan Technological University, USA.
  • Adhikari, S., & You, Z (2011). Investigating the sensitivity of aggregate size within sand mastic by modeling the microstructure of an asphalt mixture. Journal of Materials in Civil Engineering, 23, 580–586.10.1061/(ASCE)MT.1943-5533.0000212
  • Alonso-Marroquín, F., Mühlhaus, H. B., & Herrmann, H. J. (2008). Micromechanical investigation of granular ratcheting using a discrete model of polygonal particles. Particuology, 6, 390–403.10.1016/j.partic.2008.07.015
  • Alonso-Marroquín, F., Luding, S., Herrmann, H. J., & Vardoulakis, I. (2005). Role of anisotropy in the elastoplastic response of a polygonal packing. Physical Review E, 71(5), 051304,1–18.
  • Anderson, D. A., & Goetz, W. H. (1973). Mechanical behavior and reinforcement of mineral filler-asphalt mixtures. Journal of Association Asphalt Paving Technologists, 42, 37–66.
  • Aragao, F. (2011). Computational microstructure modeling of asphalt mixtures subjected to rate-dependent fracture (PhD thesis). University of Nebraska, USA.
  • Aragão, F. T. S., Kim, Y. R., Lee, J., & Allen, D. H. (2010). Micromechanical model for heterogeneous asphalt concrete mixtures subjected to fracture failure. Journal of Materials in Civil Engineering, 23(1), 30–38.
  • Aragão, F. T. S., & Kim, Y. R. (2011). Characterization of fracture properties of asphalt mixtures based on cohesive zone modeling and digital image correlation technique. In Transportation Research Board 90th Annual Meeting ( No. 11-1229).
  • Arslan, H., & Sture, S. (2008). Evaluation of a physical length scale for granular materials. Computational Materials Science, 42(3), 525–530.10.1016/j.commatsci.2007.08.016
  • Ban, H., Kim, Y. R., & Rhee, S. K. (2013). Computational microstructure modeling to estimate progressive moisture damage behavior of asphaltic paving mixtures. International Journal for Numerical and Analytical Methods in Geomechanics, 37(13), 2005–2020.
  • Bandyopadhyaya, R., Das, A., & Basu, S. (2008). Numerical simulation of mechanical behaviour of asphalt mix. Construction and Building Materials, 22(6), 1051–1058.10.1016/j.conbuildmat.2007.03.010
  • Bathurst, R. J., & Rothenburg, L. (1990). Observations on stress-force-fabric relationships in idealized granular materials. Mechanics of Materials, 9(1), 65–80.10.1016/0167-6636(90)90030-J
  • Birgisson, B., Soranakom, C., Napier, J. A. L. & Roque, R. (2004). Microstructure and fracture in asphalt mixtures using a boundary element approach. Journal of Materials in Civil Engineering,16 (2), 116–121.
  • Buttlar, W. G., & Roque, R. (1996). Evaluation of empirical and theoretical models to determine asphalt mixture stiffnesses at low temperatures. Journal of Association of Asphalt Paving Technologists., 65, 99–130.
  • Buttlar, W., & You, Z. (2001). Discrete element modeling of asphalt concrete: Microfabric approach. Transportation Research Record: Journal of the Transportation Research Board, 1757, 111–118.10.3141/1757-13
  • Buttlar, W. G., Bozkurt, D., Al-Khateeb, G. G., & Waldhoff, A. S. (1999). Understanding asphalt mastic behavior through micromechanics. Transportation Research Record: Journal of the Transportation Research Board, 1681, 157–169.10.3141/1681-19
  • Buttlar, W. G., Wagoner, M. P., You, Z., & Brovold, S. T. (2004). Simplifying the hollow cylinder tensile test procedure through volume-based strain. Asphalt Paving Technol, 73, 367–399.
  • Caro, S. (2009). A coupled micromechanical model of moisture-induced damage in asphalt mixtures: Formulation and applications (Doctoral dissertation, Ph. D. Thesis). Texas A&M University, College Station, TX.
  • Caro, S., Diaz, A., Rojas, D., & Nuñez, H. (2014). A micromechanical model to evaluate the impact of air void content and connectivity in the oxidation of asphalt mixtures. Construction and Building Materials, 61, 181–190.
  • Caro, S, Masad, E., Bhasin, A., & Little, D. (2010). Micromechanical modeling of the influence of material properties on moisture-induced damage in asphalt mixtures. Construction and Building Materials, 24, 1184–1192.10.1016/j.conbuildmat.2009.12.022
  • Caro, S, Masad, E, Sánchez-Silva, M., & Little, D. (2011). Stochastic micromechanical model of the deterioration of asphalt mixtures subject to moisture diffusion processes. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1079–1097.
  • Chang, C. S., & Hicher, P.-Y. (2005). An elasto-plastic model for granular materials with microstructural consideration. International Journal of Solids and Structures, 42, 4258–4277.10.1016/j.ijsolstr.2004.09.021
  • Chang, K. G., & Meegoda, J. N. (1997). Micromechanical simulation of hot mix asphalt. Journal of Engineering Mechanics, 123(5), 495–503.10.1061/(ASCE)0733-9399(1997)123:5(495)
  • Chang, C. S., & Yin, Z.-Y. (2010). Micromechanical modeling for inherent anisotropy in granular materials. Journal of Engineering Mechanics, 136, 830–839.10.1061/(ASCE)EM.1943-7889.0000125
  • Chang, C. S., Hicher, P.-Y., Yin, Z. Y., & Kong, L. R. (2009). Elastoplastic model for clay with microstructural consideration. Journal of Engineering Mechanics, 135, 917–931.10.1061/(ASCE)EM.1943-7889.0000013
  • Chehab, G. R., Seo, Y., & Kim, Y. R. (2007). Viscoelastoplastic damage characterization of asphalt–aggregate mixtures using digital image correlation. International Journal of Geomechanics, 7(2), 111–118.10.1061/(ASCE)1532-3641(2007)7:2(111)
  • Chen, L., Li, J., & Cheng, Y. (2009). Coupling of complex variable reproducing kernel particle method and finite element method for elasticity. Chinese Quarterly of Mechanics, 2, 5.
  • Chen, J., Wang, L.-B., & Huang, X.-M. (2012). Micromechanical modeling of asphalt concrete fracture using a user-defined three-dimensional discrete element method. Journal of Central South University, 19, 3595–3602.10.1007/s11771-012-1447-x
  • Chu, X., & Xu, Y. (2009). Studies on transformation from MC criterion to Drucker-Prager criterions based on distortion energy density. Rock and Soil Mechanics, 10, 16.
  • Coleri, E, Harvey, J. T., Yang, K., & Boone, J. M. (2012a). Development of a micromechanical finite element model from computed tomography images for shear modulus simulation of asphalt mixtures. Construction and Building Materials, 30, 783–793.
  • Coleri, E., Harvey, J. T., Yang, K., & Boone, J. M. (2012b). A micromechanical approach to investigate asphalt concrete rutting mechanisms. Construction and Building Materials, 30, 36–49.
  • Costanzi, M., & Cebon, D. (2014). Generalized phenomenological model for the viscoelasticity of idealized asphalts. Journal of Materials in Civil Engineering, 26(3), 399–410.10.1061/(ASCE)MT.1943-5533.0000842
  • Cundall, P. A. (1988). Computer simulations of dense sphere assemblies. Micromechanics of granular materials, 4, 113–123.
  • Cundall, P. A., & Hart, R. D. (1992). Numerical modelling of discontinua. Engineering computations, 9(2), 101–113.
  • Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65.10.1680/geot.1979.29.1.47
  • D’Addetta, G. A., Kun, F., & Ramm, E. (2002). On the application of a discrete model to the fracture process of cohesive granular materials. Granular Matter, 4(2), 77–90.10.1007/s10035-002-0103-9
  • Dai, Q. (2011). Two-and three-dimensional micromechanical viscoelastic finite element modeling of stone-based materials with X-ray computed tomography images. Construction and Building Materials, 25(2), 1102–1114.10.1016/j.conbuildmat.2010.06.066
  • Dai, Q., Sadd, M. H., Parameswaran, V., & Shukla, A. (2005). Prediction of damage behaviors in asphalt materials using a micromechanical finite-element model and image analysis. Journal of Engineering Mechanics, 131(7), 668–677.10.1061/(ASCE)0733-9399(2005)131:7(668)
  • Dai, Q., Sadd, M. H., & You, Z. (2006). A micromechanical finite element model for linear and damage-coupled viscoelastic behaviour of asphalt mixture. International Journal for Numerical and Analytical Methods in Geomechanics, 30(11), 1135–1158.10.1002/(ISSN)1096-9853
  • Darabi, M. K., Abu Al-Rub, R. K. A., Masad, E. A., Huang, C. W., & Little, D. N. (2012). A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures. International Journal of Plasticity, 35, 100–134.10.1016/j.ijplas.2012.03.001
  • Darabi, M. K., Abu Al-Rub, R. K. A., & Little, D. N. (2012). A continuum damage mechanics framework for modeling micro-damage healing. International Journal of Solids and Structures, 49(3–4), 492–513.10.1016/j.ijsolstr.2011.10.017
  • Desai, C. S. (2000). Mechanics of materials and interfaces: The disturbed state concept. Washington DC. CRC press.
  • Desai, C. S. (2007). Unified DSC constitutive model for pavement materials with numerical implementation. International Journal of Geomechanics, 7(2), 83–101.10.1061/(ASCE)1532-3641(2007)7:2(83)
  • Desai, C. S. (2010). Constitutive modeling and computer methods in geotechnical engineering. Acta Geotechnica Slovenica, 1, 5–29.
  • Desai, C. S., Pradhan, S. K., & Cohen, D. (2005). Cyclic testing and constitutive modeling of saturated sand–concrete interfaces using the disturbed state concept. International Journal of Geomechanics, 5(4), 286–294.10.1061/(ASCE)1532-3641(2005)5:4(286)
  • Deshpande, V. S., & Cebon, D. (2004). Micromechanical modeling of steady-state deformation in asphalt. Journal of Materials in Civil Engineering, 16(2), 100–106.10.1061/(ASCE)0899-1561(2004)16:2(100)
  • Ehlers, W., Diebels, S., & Michelitsch, T. (2001). Microscopic modelling of granular materials taking into account particle rotations. In Continuous and discontinuous modelling of cohesive-frictional materials (pp. 259–274). Berlin: Springer.10.1007/3-540-44424-6
  • Erkens, S. M. J. G., Liu, X., & Scarpas, A. (2002). 3D finite element model for asphalt concrete response simulation. International Journal of Geomechanics, 2(3), 305–330.10.1061/(ASCE)1532-3641(2002)2:3(305)
  • Fan, T. (2012). Concrete microstructure homogenization technique with application to model concrete serviceability ( PhD thesis). The University of New Mexico, New Mexico, USA.
  • Feng, Z. (2003). Micromechanics-based multiscale lattice modeling of fatigue cracking in hot mixed asphalt. ( PhD thesis). North Carolina State University, USA.
  • Forest, S., & Sab, K. (1998). Cosserat overall modeling of heterogeneous materials. Mechanics Research Communications, 25(4), 449–454.10.1016/S0093-6413(98)00059-7
  • Forest, S., & Sievert, R. (2006). Nonlinear microstrain theories. International Journal of Solids and Structures, 43(24), 7224–7245.10.1016/j.ijsolstr.2006.05.012
  • Forest, S., Dendievel, R., & Canova, G. R. (1999). Estimating the overall properties of heterogeneous Cosserat materials. Modelling and Simulation in Materials Science and Engineering, 7(5), 829.10.1088/0965-0393/7/5/314
  • Gardiner, B. S., & Tordesillas, A. (2006). Effects of particle size distribution in a three-dimensional micropolar continuum model of granular media. Powder Technology, 161(2), 110–121.10.1016/j.powtec.2005.04.057
  • Ghauch, Z. G., Ozer, H., & Al-Qadi, I. L. (2015). Micromechanical finite element modeling of moisture damage in bituminous composite materials. Construction and Building Materials, 80, 9–17.10.1016/j.conbuildmat.2014.12.118
  • Gong, H. (2000). Thermo-micromechanical damage models of airfield concrete pavement under high temperature loading ( PhD thesis). University of California Los Angeles, USA.
  • González, J. M., Canet, J. M., Oller, S., & Miró, R. (2007). A viscoplastic constitutive model with strain rate variables for asphalt mixtures – numerical simulation. Computational Materials Science, 38(4), 543–560.10.1016/j.commatsci.2006.03.013
  • Hirschberger, C. B., Sukumar, N., & Steinmann, P. (2008). Computational homogenization of material layers with micromorphic mesostructure. Philosophical Magazine, 88(30–32), 3603–3631.10.1080/14786430802502567
  • Khan, R., Grenfell, J., & Collop, A. (2015). Micromechanical modelling of typical Dense Bitumen Macadam (DBM) from laboratory testing and X-ray Computed Tomography (CT). Construction and Building Materials, 77, 1–6.10.1016/j.conbuildmat.2014.12.028
  • Kim, Y. R. (2009). Modeling of asphalt concrete New York: McGraw-Hill Professional.
  • Kim, M. (2009). Development of differential scheme micromechanics modeling framework for predictions of Hot-Mix Asphalt (HMA) complex modulus and experimental validations ( PhD thesis). University of Illinois at Urbana-Champaign, USA.
  • Kim, Y. R., & Little, D. N. (2004). Linear viscoelastic analysis of asphalt mastics. Journal of Materials in Civil Engineering, 16(2), 122–132.10.1061/(ASCE)0899-1561(2004)16:2(122)
  • Kim, Y. R., Allen, D. H., & Little, D. N. (2005). Damage-induced modeling of asphalt mixtures through computational micromechanics and cohesive zone fracture. Journal of Materials in Civil Engineering, 17(5), 477–484.10.1061/(ASCE)0899-1561(2005)17:5(477)
  • Kim, J. H., Lee, M. G., & Wagoner, R. H. (2010). A boundary smoothing algorithm for image-based modeling and its application to micromechanical analysis of multi-phase materials. Computational Materials Science, 47(3), 785–795.
  • Kim, H., Wagoner, M. P., & Buttlar, W. G. (2009). Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test. Materials and Structures, 42(5), 677–689.10.1617/s11527-008-9412-8
  • Kose, S., Guler, M., Bahia, H., & Masad, E. (2000). Distribution of strains within hot-mix asphalt binders: Applying imaging and finite-element techniques. Transportation Research Record: Journal of the Transportation Research Board, 1728, 21–27.10.3141/1728-04
  • Kourepinis, D. (2008). Higher-order discontinuous modelling of fracturing in quasi-brittle materials ( PhD thesis). University of Glasgow, UK.
  • Kouznetsova, V., Brekelmans, W. A. M., & Baaijens, F. P. T. (2001). An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics, 27(1), 37–48.10.1007/s004660000212
  • Kouznetsova, V., Geers, M. G., & Brekelmans, W. M. (2002). Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 54(8), 1235–1260.10.1002/(ISSN)1097-0207
  • Krishnan, J. M., & Rajagopal, K. R. (2004). Thermodynamic framework for the constitutive modeling of asphalt concrete: Theory and applications. Journal of Materials in Civil Engineering, 16(2), 155–166.10.1061/(ASCE)0899-1561(2004)16:2(155)
  • Krishnan, J. M., Rajagopal, K. R., Masad, E., & Little, D. N. (2006). Thermomechanical framework for the constitutive modeling of asphalt concrete. International Journal of Geomechanics, 6(1), 36–45.10.1061/(ASCE)1532-3641(2006)6:1(36)
  • Kutay, M. E., Varma, S., & Jamrah, A. (2017). A micromechanical model to create digital microstructures of asphalt mastics and crumb rubber-modified binders. International Journal of Pavement Engineering, 18(9), 754–764.
  • Kutay, M. E., Arambula, E., Gibson, N., & Youtcheff, J. (2010). Three-dimensional image processing methods to identify and characterise aggregates in compacted asphalt mixtures. International Journal of Pavement Engineering, 11(6), 511–528.
  • Lachihab, A., & Sab, K. (2005). Aggregate composites: A contact based modeling. Computational Materials Science, 33(4), 467–490.10.1016/j.commatsci.2004.10.003
  • Lee, H. J., & Kim, Y. R. (1998). Viscoelastic continuum damage model of asphalt concrete with healing. Journal of Engineering Mechanics, 124(11), 1224–1232.10.1061/(ASCE)0733-9399(1998)124:11(1224)
  • Li, S. C., & Cheng, Y. M. (2005). Enriched meshless manifold method for two-dimensional crack modeling. Theoretical and Applied Fracture Mechanics, 44(3), 234–248.10.1016/j.tafmec.2005.09.002
  • Li, X., Zhang, X., & Zhang, J. (2010). A generalized Hill’s lemma and micromechanically based macroscopic constitutive model for heterogeneous granular materials. Computer Methods in Applied Mechanics and Engineering, 199(49–52), 3137–3152.10.1016/j.cma.2010.06.016
  • Li, X., Du, Y., and Duan, Q. (2013). Micromechanically informed constitutive model and anisotropic damage characterization of Cosserat continuum for granular materials. International Journal of Damage Mechanics, 22(5), 643–682.10.1177/1056789512462427
  • Liu, Y. (2011). Discrete element methods for asphalt concrete: Development and application of user-defined microstructural models and a viscoelastic micromechanical model ( PhD thesis). Michigan Technological University, USA.
  • Liu, Y., & You, Z. (2011). Discrete element modeling: Impacts of aggregate sphericity, orientation, and angularity on creep stiffness of idealized asphalt mixtures. Journal of Engineering Mechanics, 137(4), 294–303.10.1061/(ASCE)EM.1943-7889.0000228
  • Liu, Y., Dai, Q., & You, Z. (2009). Viscoelastic model for discrete element simulation of asphalt mixtures. Journal of Engineering Mechanics, 135(4), 324–333.10.1061/(ASCE)0733-9399(2009)135:4(324)
  • Lu, Y. (2010). Reconstruction, characterization, modeling and visualization of inherent and induced digital sand microstructures ( PhD thesis). Georgia Institute of Technology, USA.
  • Luding, S. (2004). Micro-macro transition for anisotropic, frictional granular packings. International Journal of Solids and Structures, 41, 5821–5836.10.1016/j.ijsolstr.2004.05.048
  • Luding, S. (2008). Cohesive, frictional powders: Contact models for tension. Granular Matter, 10(4), 235–246.10.1007/s10035-008-0099-x
  • Lytton, R. (1990). Materials property relationships for modeling the behavior of asphalt aggregate mixtures in pavements. Washington, DC: Internal Memorandum Strategic Highway Research Program.
  • Ma, G. W., An, X. M., Zhang, H. H., & Li, L. X. (2009). Modeling complex crack problems using the numerical manifold method. International Journal of Fracture, 156(1), 21–35.10.1007/s10704-009-9342-7
  • MacLaughlin, M. M., & Doolin, D. M. (2006). Review of validation of the discontinuous deformation analysis (DDA) method. International Journal for Numerical and Analytical Methods in Geomechanics, 30(4), 271–305.10.1002/(ISSN)1096-9853
  • Masad, E., & Somadevan, N. (2002). Microstructural finite-element analysis of influence of localized strain distribution on asphalt mix properties. Journal of Engineering Mechanics, 128(10), 1105–1114.10.1061/(ASCE)0733-9399(2002)128:10(1106)
  • Masad, E., Muhunthan, B., Shashidhar, N., & Harman, T. (1998). Aggregate orientation and segregation in asphalt concrete. Geotechnical Special Publication, ASCE, GSP, 85, 69–80.
  • Masad, E., Muhunthan, B., Shashidhar, N., & Harman, T. (1999). Internal structure characterization of asphalt concrete using image analysis. Journal of Computing in Civil Engineering, 13(2), 88–95.10.1061/(ASCE)0887-3801(1999)13:2(88)
  • Masad, E., Tashman, L., Somedavan, N., & Little, D. (2002). Micromechanics-based analysis of stiffness anisotropy in asphalt mixtures. Journal of Materials in Civil Engineering, 14(5), 374–383.10.1061/(ASCE)0899-1561(2002)14:5(374)
  • Masad, E., Tashman, L., Little, D., & Zbib, H. (2005). Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics. Mechanics of Materials, 37(12), 1242–1256.10.1016/j.mechmat.2005.06.003
  • Masad, E., Arambula, E., Ketcham, R., Abbas, A., & Martin, A. E. (2007). Nondestructive measurements of moisture transport in asphalt mixtures. Asphalt Paving Technology-Proceedings, 76, 919.
  • Masad, E., Dessouky, S., & Little, D. (2007). Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt. International Journal of Geomechanics, 7(2), 119–130.10.1061/(ASCE)1532-3641(2007)7:2(119)
  • Meier, H. A., Steinmann, P., & Kuhl, E. (2008). Towards multiscale computation of confined granular media–contact forces, stresses and tangent operators. Technische Mechanik, 28(1), 32–42.
  • Micaelo, R., Ribeiro, J., Azevedo, M., & Azevedo, N. (2011). Asphalt compaction study: Micromechanical modelling of a simplified lab compaction procedure. Road Materials and Pavement Design, 12(3), 461–491.
  • Miehe, C., & Dettmar, J. (2004). A framework for micro–macro transitions in periodic particle aggregates of granular materials. Computer Methods in Applied Mechanics and Engineering, 193(3–5), 225–256.10.1016/j.cma.2003.10.004
  • Miehe, C., & Göktepe, S. (2005). A micro–macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity. Journal of the Mechanics and Physics of Solids, 53(10), 2231–2258.10.1016/j.jmps.2005.04.006
  • Misra, A., & Singh, V. (2013). Micromechanical model for viscoelastic materials undergoing damage. Continuum Mechanics and Thermodynamics, 25(2–4), 343–358.10.1007/s00161-012-0262-9
  • Misra, A., & Yang, Y. (2010). Micromechanical model for cohesive materials based upon pseudo-granular structure. International Journal of Solids and Structures, 47(21), 2970–2981.10.1016/j.ijsolstr.2010.07.002
  • Murakami, S. (1983). Notion of continuum damage mechanics and its application to anisotropic creep damage theory. Journal of Engineering Materials and Technology, 105(2), 99–105.10.1115/1.3225633
  • Nguyen, T., Combe, G., Caillerie, D., & Desrues, J. (2014). FEM× DEM modelling of cohesive granular materials: numerical homogenisation and multi-scale simulations. Acta Geophysica, 62(5), 1109–1126.
  • Oda, M. (1993). Inherent and induced anisotropy in plasticity theory of granular soils. Mechanics of Materials, 16(1–2), 35–45.10.1016/0167-6636(93)90025-M
  • Oda, M., & Nakayama, H. (1989). Yield function for soil with anisotropic fabric. Journal of Engineering Mechanics, 115(1), 89–104.10.1061/(ASCE)0733-9399(1989)115:1(89)
  • Olard, F., & Di Benedetto, H. (2003). General ‘2S2P1D’ model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Materials and Pavement Design, 4(2), 185–224.
  • Oruc, S. (2010). Neural network model for temperature sensitivity of emulsified asphalt mixtures. Indian Journal of Engineering & Materials Sciences, 17(6), 438–448.
  • Ozsahin, T. S., & Oruc, S. (2008). Neural network model for resilient modulus of emulsified asphalt mixtures. Construction and Building Materials, 22(7), 1436–1445.10.1016/j.conbuildmat.2007.01.031
  • Papagiannakis, A., Abbas, A., & Masad, E. (2002). Micromechanical analysis of viscoelastic properties of asphalt concretes. Transportation Research Record: Journal of the Transportation Research Board, 1789, 113–120.10.3141/1789-12
  • Park, S. W., Kim, Y. R., & Schapery, R. A. (1996). A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mechanics of Materials, 24(4), 241–255.10.1016/S0167-6636(96)00042-7
  • Pasetto, M., & Baldo, N. (2015a). Creep response of asphalt concretes: Visco-elasto-plastic modeling. International Journal of Pavement Research and Technology, 8(2), 63–71.
  • Pasetto, M., & Baldo, N. (2015b). Computational analysis of the creep behaviour of bituminous mixtures. Construction and Building Materials, 94, 784–790.10.1016/j.conbuildmat.2015.07.054
  • Rawling, G. C., Baud, P., & Wong, T.-F. (2002). Dilatancy, brittle strength, and anisotropy of foliated rocks: Experimental deformation and micromechanical modeling. Journal of Geophysical Research, 107(No. B10), 2234. doi:10.1029/2001JB000472
  • Roberts, F. L., Mohammad, L. N., & Wang, L. B. (2002). History of hot mix asphalt mixture design in the United States. Journal of Materials in Civil Engineering, 14(4), 279–293.10.1061/(ASCE)0899-1561(2002)14:4(279)
  • Rothenburg, L., & Bathurst, R. J. (1989). Analytical study of induced anisotropy in idealized granular materials. Geotechnique, 39(4), 601–614.10.1680/geot.1989.39.4.601
  • Rothenburg, L., & Bathurst, R. J. (1992). Micromechanical features of granular assemblies with planar elliptical particles. Geotechnique, 42(1), 79–95.10.1680/geot.1992.42.1.79
  • Rothenburg, L., & Kruyt, N. P. (2004). Critical state and evolution of coordination number in simulated granular materials. International Journal of Solids and Structures, 41(21), 5763–5774.10.1016/j.ijsolstr.2004.06.001
  • Rothenburg, L., Bogobowicz, A., Haas, R., Jung, F. W., & Kennepohl, G. (1992). Micromechanical modelling of asphalt concrete in connection with pavement rutting problems. International conference on asphalt pavements, 7th, 1992, Nottingham, UK (Vol. 1).
  • Sadd, M. H., & Dai, Q. (2005). A comparison of micro-mechanical modeling of asphalt materials using finite elements and doublet mechanics. Mechanics of Materials, 37(6), 641–662.10.1016/j.mechmat.2004.06.004
  • Sadd, M., Dai, Q., Parameswaran, V., & Shukla, A. (2003). Simulation of asphalt materials using finite element micromechanical model with damage mechanics. Transportation Research Record: Journal of the Transportation Research Board, 1832, 86–95.10.3141/1832-11
  • Sane, S. M., Desai, C. S., Jenson, J. W., Contractor, D. N., Carlson, A. E., & Clark, P. U. (2008). Disturbed state constitutive modeling of two Pleistocene tills. Quaternary Science Reviews, 27(3–4), 267–283.10.1016/j.quascirev.2007.10.003
  • Schapery, R. A. (1986). A micromechanical model for non-linear viscoelastic behavior of particle-reinforced rubber with distributed damage. Engineering Fracture Mechanics, 25(5–6), 845–867.10.1016/0013-7944(86)90046-9
  • Seidel, G. D. (2007). Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites ( PhD thesis). Texas A&M University, USA.
  • Shashidhar, N., & Shenoy, A. (2002). On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics. Mechanics of Materials, 34(10), 657–669.10.1016/S0167-6636(02)00166-7
  • Shi, G. H. (1991). Manifold method of material analysis. Transaction of the 9th army conference on apllied mathematics and computing (pp. 57–76), Minneapolis, MN.
  • Shi, G. H. (1996). Manifold method. Proceedings of the First International Forum on Discontinuous Deformation Analysis and Simulations of Discontinuous Medium (pp. 52–204), NM, USA.
  • Shi, G. H. (1997, July). Numerical manifold method. In Y. Ohnishi (Ed.), Proceedings of 2nd international conference on analysis of discontinuous deformation (pp. 1–35). Kyoto.
  • Strack, O. D. L., & Cundall, P. A. (1978). The distinct element method as a tool for research in granular media. Department of Civil and Mineral Engineering, University of Minnesota.
  • Sudo Lutif, J. E. (2011). Computational micromechanics modeling of damage-dependent bituminous composites based on two-way coupled multiscale approach ( PhD thesis). University of Nebraska, Nebraska, USA.
  • Tabakovic, A., McNally, C., Sorelli, L. G., Gibney, A., & Gilchrist, M. D. (2006, April 19–20). Development of a combined micromechanics & damage mechanics model for the design of asphalt pavements. Joint conference of the association for computational mechanics in engineering (UK) and the Irish society for scientific and engineering computation, QUB, Belfast.
  • Takaki, T., Yoshimoto, C., Yamanaka, A., & Tomita, Y. (2014). Multiscale modeling of hot-working with dynamic recrystallization by coupling microstructure evolution and macroscopic mechanical behavior. International Journal of Plasticity, 52, 105–116.10.1016/j.ijplas.2013.09.001
  • Tarefder, R. A., White, L., & Zaman, M. (2005). Neural network model for asphalt concrete permeability. Journal of Materials in Civil Engineering, 17(1), 19–27.10.1061/(ASCE)0899-1561(2005)17:1(19)
  • Tashman, L. (2003). Microstructural viscoplastic continuum model for asphalt concrete. ( PhD thesis). Texas A&M University, USA.
  • Tashman, L., Masad, E., Peterson, B., & Saleh, H. (2001). Internal structure analysis of asphalt mixes to improve the simulation of Superpave gyratory compaction to field conditions. Association of Asphalt Paving Technologists, 70, 605–645.
  • Tashman, L., Masad, E., Little, D., & Zbib, H. (2005). A microstructure-based viscoplastic model for asphalt concrete. International Journal of Plasticity, 21(9), 1659–1685.10.1016/j.ijplas.2004.11.008
  • Thornton, C., & Antony, S. J. (2000). Quasi-static shear deformation of a soft particle system. Powder Technology, 109(1–3), 179–191.10.1016/S0032-5910(99)00235-1
  • Tomas, J. (2001). Assessment of mechanical properties of cohesive particulate solids. Part 1: Particle contact constitutive model. Particulate Science and Technology, 19(2), 95–110.10.1080/02726350152772056
  • Ullidtz, P. (2001). Distinct element method for study of failure in cohesive particulate media. Transportation Research Record: Journal of the Transportation Research Board, 1757, 127–133.10.3141/1757-15
  • Walsh, S. D. C., & Tordesillas, A. (2004). A thermomechanical approach to the development of micropolar constitutive models of granular media. Acta Mechanica, 167(3–4), 145–169.10.1007/s00707-003-0072-z
  • Wang, H., Zhang, R., Chen, Y., You, Z., & Fang, J. (2016). Study on microstructure of rubberized recycled hot mix asphalt based X-ray CT technology. Construction and Building Materials,121, 177–184.
  • Xiong, Y., Yang, X., & Chen, S. (2005). New numerical computation method: Meshless methods. Journal of Zhuzhou Institute of Technology, 4, 7.
  • Yang, J., & Wang, K. (2012). Virtual triaxial test simulation based on discrete element method for shear resistance property assessment of asphalt mixtures. Journal of Testing and Evaluation, 40(7), 1–9.
  • Yang, J., Zhang, X., & Zhu, H. R. (2012). Discrete element simulation on tri-axial shear test of asphalt mixtures. Journal of Building Materials, 15, 64–68.
  • Yin, Z. Y., & Chang, C. S. (2009). Microstructural modelling of stress-dependent behaviour of clay. International Journal of Solids and Structures, 46(6), 1373–1388.10.1016/j.ijsolstr.2008.11.006
  • Yin, H. M., Buttlar, W. G., Paulino, G. H., & Benedetto, H. D. (2008). Assessment of existing micro-mechanical models for asphalt mastics considering viscoelastic effects. Road Materials and Pavement Design, 9(1), 31–57.10.1080/14680629.2008.9690106
  • You, Z., & Dai, Q. (2007a). Dynamic complex modulus predictions of hot-mix asphalt using a micromechanical-based finite element model. Canadian Journal of Civil Engineering, 34(12), 1519–1528.10.1139/L07-064
  • You, Z., & Dai, Q. (2007b). Review of advances in micromechanical modeling of aggregate-aggregate interactions in asphalt mixtures. Canadian Journal of Civil Engineering, 34(2), 239–252.10.1139/l06-113
  • You, T., Al-Rub, R. K. A., Darabi, M. K., Masad, E. A., & Little, D. N. (2012). Three-dimensional microstructural modeling of asphalt concrete using a unified viscoelastic–viscoplastic–viscodamage model. Construction and Building Materials, 28(1), 531–548.10.1016/j.conbuildmat.2011.08.061
  • You, T., Abu Al-Rub, R., Masad, E., & Little, D. N. (2013). Three-dimensional microstructural modeling of asphalt concrete by use of X-ray computed tomography. Transportation Research Record: Journal of the Transportation Research Board, 2373, 63–70.
  • Yu, J. (2011). Micromechanically based multiscale material modeling of polymer nanocomposites. ( PhD thesis). Mississippi State University, USA.
  • Yu, X. J., Shi, J. Y., & Xu, Y. B. (2009). Modeling disturbed state and anisotropy of natural soft clays. Rock and Soil Mechanics, 30(11), 3307–3312.
  • Zelelew, H. M., & Papagiannakis, A. T. (2010). Micromechanical modeling of asphalt concrete uniaxial creep using the discrete element method. Road Materials and Pavement Design, 11(3), 613–632.10.1080/14680629.2010.9690296
  • Zhang, Y., & Huang, X. (2010). Viscoelasticity prediction of asphalt mixture based on micromechanics. Journal of Jilin University (Engineering and Technology Edition), 4(1), 52–57.
  • Zhang, J. T., & Yang, J. (2013). Advances in micromechanical constitutive theories and modeling in asphalt mixture: A review. Procedia-Social and Behavioral Sciences, 96, 1304–1314.10.1016/j.sbspro.2013.08.148
  • Zheng, J. Y., & Wu, A. L. (2008). Mesoscopic analysis of the utilization of hardening model for a description of softening behavior based on disturbed state concept theory. Journal of Zhejiang University-Science A, 9(9), 1167–1175.10.1631/jzus.A0720062
  • Zhong, X., & Chang, C. S. (1999). Micromechanical modeling for behavior of cementitious granular materials. Journal of Engineering Mechanics, 125(11), 1280–1285.10.1061/(ASCE)0733-9399(1999)125:11(1280)
  • Zhou, C., Zhao, Y., & Wang, Z. (2009a). A discontinuous numerical method for asphalt mixture. Proceedings of the 9th International Conference of Chinese Transportation Professionals, ICCTP 2009: Critical Issues in Transportation System Planning, Development, and Management, 358(6), 2450–2455.
  • Zhou, C., Zhao, Y., & Wang, Z. (2009b). A numerical method for modelling discontinuous mechanics of asphalt mixture. International Journal of Recent Trends Engineering and Technology, 1(6), 25–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.