227
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation on progressive fracture behaviours of macroscopic heterogeneous rock bridge

& ORCID Icon
Pages 603-619 | Received 11 Mar 2017, Accepted 24 Nov 2017, Published online: 05 Dec 2017

References

  • Afifipour, M., & Moarefvand, P. (2014a). Failure patterns of geomaterials with block-in-matrix texture: Experimental and numerical evaluation. Arabian Journal of Geosciences, 7(7), 2781–2792. doi:10.1007/s12517-013-0907-4
  • Afifipour, M., & Moarefvand, P. (2014b). Mechanical behavior of bimrocks having high rock block proportion. International Journal of Rock Mechanics and Mining Sciences, 65, 40–48. doi:10.1016/j.ijrmms.2013.11.008
  • Bobet, A. (2000). The initiation of secondary cracks in compression. Engineering Fracture Mechanics, 66(2), 187–219.10.1016/S0013-7944(00)00009-6
  • Bobet, A., & Einstein, H. H. (1998). Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences, 35(7), 863–888. doi:10.1016/s0148-9062(98)00005-9
  • Das, S., & Kostrov, B. V. (1983). Breaking of a single asperity: Rupture process and seismic radiation. Journal of Geophysical Research: Solid Earth, 88(B5), 4277–4288. doi:10.1029/JB088iB05p04277
  • Goebel, T. H. W., Becker, T. W., Schorlemmer, D., Stanchits, S., Sammis, C., Rybacki, E., & Dresen, G. (2012). Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. Journal of Geophysical Research: Solid Earth, 117, 1–18. doi: 10.1029/2011jb008763
  • Huang, D., Gu, D. M., Yang, C., Huang, R. Q., & Fu, G. Y. (2016). Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mechanics and Rock Engineering, 49(2), 375–399. doi:10.1007/s00603-015-0757-3
  • Janeiro, R. P., & Einstein, H. H. (2010). Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression). International Journal of Fracture, 164(1), 83–102. doi:10.1007/s10704-010-9457-x
  • Jiang, H. K., Ma, S. L., Zhang, L., Cao, W. H., & Hou, H. F. (2003). Spatial-temporal characteristics of acoustic emission of rock sample with regular fault and a columnar barrier during deformation. [含障碍体平直断层标本变形过程中群体微破裂事件的时空演化特征.] Chinese Journal of Geophysics-Chinese Edition, 46(2), 209–216. doi:10.3321/j.issn:0001-5733.2003.02.013
  • Kahraman, S., & Alber, M. (2008). Triaxial strength of a fault breccia of weak rocks in a strong matrix. Bulletin of Engineering Geology and the Environment, 67(3), 435–441. doi:10.1007/s10064-008-0152-3
  • Kahraman, S., Alber, M., Fener, M., & Gunaydin, O. (2008). Evaluating the geomechanical properties of Misis fault breccia (Turkey). International Journal of Rock Mechanics and Mining Sciences, 45(8), 1469–1479. doi:10.1016/j.ijrmms.2008.02.010
  • Kaiser, P. K., & Tang, C. A. (1998). Numerical simulation of damage accumulation and seismic energy release during brittle rock failure – Part II: Rib Pillar collapse. International Journal of Rock Mechanics and Mining Sciences, 35(2), 123–134. doi:10.1016/s0148-9062(97)00010-7
  • Lawn, B. R. (1993). Fracture of brittle solids. New York, NY: Cambridge University Press.10.1017/CBO9780511623127
  • Lee, H., & Jeon, S. (2011). An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures, 48(6), 979–999. doi:10.1016/j.ijsolstr.2010.12.001
  • Lei, X. L. (2003). How do asperities fracture? An experimental study of unbroken asperities. Earth and Planetary Science Letters, 213(3–4), 347–359. doi:10.1016/s0012-821x(03)00328-5
  • Lei, X. L., Nishizawa, O., Kusunose, K., Cho, A., Satoh, T., & Nishizawa, O. (2000). Compressive failure of mudstone samples containing quartz veins using rapid AE monitoring: The role of asperities. Tectonophysics, 328(3–4), 329–340. doi:10.1016/s0040-1951(00)00215-8
  • Lei, X. L., Kusunose, K., Satoh, T., & Nishizawa, O. (2003). The hierarchical rupture process of a fault: An experimental study. Physics of the Earth and Planetary Interiors, 137(1–4), 213–228. doi:10.1016/s0031-9201(03)00016-5
  • Lei, X. L., Masuda, K., Nishizawa, O., Jouniaux, L., Liu, L., Ma, W. T., & Satoh, T. (2004). Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock. Journal of Structural Geology, 26(2), 247–258. doi:10.1016/s0191-8141(03)0095-6
  • Liu, Q. S., Xu, J., Liu, B., & Jiang, J. D. (2015). Acoustic emission behavior of rock-like material containing two flaws in the process of deformation failure. Shock and Vibration, 2015, 1–9. doi: 10.1155/2015/167580
  • Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., & Sidorin, A. (1991). Quasi-static fault growth and shear fracture energy in granite. Nature, 350(6313), 39–42. doi:10.1038/350039a0
  • Manouchehrian, A., & Marji, M. F. (2012). Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression. Acta Mechanica Sinica, 28(5), 1389–1397. doi:10.1007/s10409-012-0145-0
  • Medley, E. W. (1994). The engineering characterization of melanges and similar block-in-matrix rocks (bimrocks). (Doctor of Philosophy PhD thesis). University of California, Berkeley.
  • Michlmayr, G., Cohen, D., & Or, D. (2012). Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media – A review. Earth-Science Reviews, 112(3–4), 97–114. doi:10.1016/j.earscirev.2012.02.009
  • Moradian, Z., Einstein, H. H., & Ballivy, G. (2016). Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals. Rock Mechanics and Rock Engineering, 49(3), 785–800. doi:10.1007/s00603-015-0775-1
  • Morgan, S. P., Johnson, C. A., & Einstein, H. H. (2013). Cracking processes in Barre granite: Fracture process zones and crack coalescence. International Journal of Fracture, 180(2), 177–204. doi:10.1007/s10704-013-9810-y
  • Nemat-Nasser, S., & Horii, H. (1982). Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. Journal of Geophysical Research: Solid Earth, 87(B8), 6805–6821. doi:10.1029/JB087iB08p06805
  • Park, C. H., & Bobet, A. (2009). Crack coalescence in specimens with open and closed flaws: A comparison. International Journal of Rock Mechanics and Mining Sciences, 46(5), 819–829. doi:10.1016/j.ijrmms.2009.02.006
  • Shen, B. T., Stephansson, O., Einstein, H. H., & Ghahreman, B. (1995). Coalescence of fractures under shear stresses in experiments. Journal of Geophysical Research: Solid Earth, 100(B4), 5975–5990. doi:10.1029/95jb00040
  • Singh, J., Ramamurthy, T., & Rao, G. V. (1989). Strength of rocks at depth. Paper presented at the Proc International Symposium on Rock, Great Depth, Pau.
  • Tang, C. A. (1997). Numerical simulation of progressive rock failure and associated seismicity. International Journal of Rock Mechanics and Mining Sciences, 34(2), 249–261. doi:10.1016/s0148-9062(96)00039-3
  • Tang, C. A., & Kou, S. Q. (1998). Crack propagation and coalescence in brittle materials under compression. Engineering Fracture Mechanics, 61(3–4), 311–324. doi:10.1016/s0013-7944(98)00067-8
  • Tang, C. A., Liu, H., Lee, P. K. K., Tsui, Y., & Tham, L. G. (2000). Numerical studies of the influence of microstructure on rock failure in uniaxial compression – Part I: Effect of heterogeneity. International Journal of Rock Mechanics and Mining Sciences, 37(4), 555–569. doi:10.1016/s1365-1609(99)00121-5
  • Wang, Y., Li, X., & Wu, Y. F. (2015). Damage evolution analysis of SRM under compression using X-ray tomography and numerical simulation. European Journal of Environmental and Civil Engineering, 19(4), 400–417. doi:10.1080/19648189.2014.945044
  • Wong, R. H. C., & Chau, K. T. (1998). Crack coalescence in a rock-like material containing two cracks. International Journal of Rock Mechanics and Mining Sciences, 35(2), 147–164. doi:10.1016/s0148-9062(97)00303-3
  • Wong, L. N. Y., & Einstein, H. H. (2009). Crack coalescence in molded gypsum and carrara marble: Part 1. macroscopic observations and interpretation. Rock Mechanics and Rock Engineering, 42(3), 475–511. doi:10.1007/s00603-008-0002-4
  • Wong, R. H. C., Chau, K. T., Tang, C. A., & Lin, P. (2001). Analysis of crack coalescence in rock-like materials containing three flaws – Part I: Experimental approach. International Journal of Rock Mechanics and Mining Sciences, 38(7), 909–924. doi:10.1016/s1365-1609(01)00064-8
  • Yang, S. Q., Liu, X. R., & Jing, H. W. (2013). Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 63, 82–92. doi:10.1016/j.ijrmms.2013.06.008
  • Zhu, W. C., & Tang, C. A. (2004). Micromechanical model for simulating the fracture process of rock. Rock Mechanics and Rock Engineering, 37(1), 25–56. doi:10.1007/s00603-003-0014-z
  • Zhuang, X. Y., Chun, J. W., & Zhu, H. H. (2014). A comparative study on unfilled and filled crack propagation for rock-like brittle material. Theoretical and Applied Fracture Mechanics, 72(Supplement C), 110–120. doi:10.1016/j.tafmec.2014.04.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.