221
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Multiscale modelling approach to determine the specific heat of cementitious materials

, ORCID Icon &
Pages 535-551 | Received 09 Oct 2017, Accepted 15 Feb 2018, Published online: 08 Mar 2018

References

  • Abyaneh, S. D., Wong, H. S., & Buenfeld, N. R. (2016). Simulating the effect of microcracks on the diffusivity and permeability of concrete using a three-dimensional model. Computational Materials Science, 119, 130–143.10.1016/j.commatsci.2016.03.047
  • Adenot, F., & Buil, M. (1992). Modelling of the corrosion of the cement paste by deionized water. Cement and Concrete Research, 22(2–3), 489–496.10.1016/0008-8846(92)90092-A
  • Anderson, O. L. (1963). A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917.10.1016/0022-3697(63)90067-2
  • Bary, B., Bourcier, C., & Helfer, T. (2017). Analytical and 3D numerical analysis of the thermoviscoelastic behavior of concrete-like materials including interfaces. Advances in Engineering Software, 112, 16–30.10.1016/j.advengsoft.2017.06.006
  • Benkemoun, N., Hammood, M. N., & Amiri, O. (2017). A meso-macro numerical approach for crack-induced diffusivity evolution in concrete. Construction and Building Materials, 141, 72–85.10.1016/j.conbuildmat.2017.02.146
  • Benniou, H. (2016). Discrete element modelling of cementitious material structures under severe impact - taking into account of the saturation level. Grenoble, France: University Grenoble Alpes.
  • Bernard, F., & Kamali-Bernard, S. (2010). Performance simulation and quantitative analysis of cement-based materials subjected to leaching. Computational Materials Science, 50(1), 218–226.10.1016/j.commatsci.2010.08.002
  • Bernard, F., & Kamali-Bernard, S. (2012). Predicting the evolution of mechanical and diffusivity properties of cement pastes and mortars for various hydration degrees – A numerical simulation investigation. Computational Materials Science, 61, 106–115.10.1016/j.commatsci.2012.03.023
  • Bernard, F., & Kamali-Bernard, S. (2015). Numerical study of ITZ contribution on mechanical behavior and diffusivity of mortars. Computational Materials Science, 102, 250–257.10.1016/j.commatsci.2015.02.016
  • Bernard, F., Kamali-Bernard, S., & Prince, W. (2008). 3D multi-scale modelling of mechanical behaviour of sound and leached mortar. Cement and Concrete Research, 38(4), 449–458.10.1016/j.cemconres.2007.11.015
  • Bouderba, B., Houari, M. S. A., & Tounsi, A. (2013). Thermomechanical bending response of FGM thick plates resting on Winkler–Pasternak elastic foundations. Steel & Composite structures, 14(1), 85–104.10.12989/scs.2013.14.1.085
  • Bousahla, A. A., Benyoucef, S., Tounsi, A., & Mahmoud, S. R. (2016). On thermal stability of plates with functionally graded coefficient of thermal expansion. Structural Engineering and Mechanics, 60(2), 313–335.10.12989/sem.2016.60.2.313
  • Catti, M. (1985). Calculation of elastic constants by the method of crystal static deformation. Acta Crystallographica Section A: Foundations of Crystallography, 41(5), 494–500.
  • Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift fuer Kristallographie, 220(5–6), 567–570.
  • Cong, X., & Kirkpatrick, R. J. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Materials, 3(3–4), 144–156.10.1016/S1065-7355(96)90046-2
  • Constantinides, G., & Ulm, F. J. (2004). The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research, 34(1), 67–80.10.1016/S0008-8846(03)00230-8
  • de Broglie, L. (1925). Recherches sur la théorie des Quanta. Annales de Physique, 10(3), 22–128.10.1051/anphys/192510030022
  • Debye, P. (1912). Zur theorie der spezifischen wärmen. Annalen der Physik, 344(14), 789–839.10.1002/(ISSN)1521-3889
  • Fu, J. (2016). Multiscale modeling and mechanical properties of typical anisotropic crystal structures at nanoscale. Rennes, France: INSA Rennes.
  • Fu, J., Bernard, F., & Kamali-Bernard, S. (2015). Multiscale modeling and mechanical properties of zigzag CNT and triple-layer graphene sheet based on atomic finite element method. Journal of Nano Research, 33, 92–105.10.4028/www.scientific.net/JNanoR.33
  • Fu, J., Bernard, F., & Kamali-Bernard, S. (2017). First-principles calculations of typical anisotropic cubic and hexagonal structures and homogenized moduli estimation based on the Y- parameter. Application to CaO, MgO, CH and Calcite CaCO3. Journal of Physics and Chemistry of Solids, 101, 274–289.
  • Fu, J., Bernard, F., & Kamali-Bernard, S. (2018). Assessment of the elastic properties of amorphous Calcium Silicates Hydrates (I) and (II) structures by Molecular Dynamics Simulation. Molecular Simulation, 44(4), 285–299.
  • Fu, X., & Chung, D. D. L. (1997). Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste. Cement and Concrete Research, 27, 1799–1804.10.1016/S0008-8846(97)00174-9
  • Gaillac, R., Pullumbi, P., & Coudert, F.-X. (2016). ELATE: An open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28, 5201.
  • Hamid, S.A. (1981). The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O. Zeitschrift für Kristallographie-Crystalline Materials, 154(1–4), 189–198.
  • Hashin, Z. (1962). The elastic moduli of heterogeneous materials. Journal of Applied Mechanics, 29(1), 143–150.10.1115/1.3636446
  • Hilloulin, B., Hilloulin, D., Grondin, F., Loukili, A., & De Belie, N. (2016). Mechanical regains due to self-healing in cementitious materials: Experimental measurements and micro-mechanical model. Cement and Concrete Research, 80, 21–32.10.1016/j.cemconres.2015.11.005
  • Jennings, H. M. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 30(1), 101–116.10.1016/S0008-8846(99)00209-4
  • Jin, L., Zhang, R., & Du, X. (2017). Computational homogenization for thermal conduction in heterogeneous concrete after mechanical stress. Construction and Building Materials, 141, 222–234.10.1016/j.conbuildmat.2017.03.016
  • Ji, Q., Pellenq, R. J. M., & Van Vliet, K. J. (2012). Comparison of computational water models for simulation of calcium–silicate–hydrate. Computational Materials Science, 53(1), 234–240.10.1016/j.commatsci.2011.08.024
  • Kamali-Bernard, S., & Bernard, F. (2009). Effect of tensile cracking on diffusivity of mortar: 3D numerical modelling. Computational Materials Science, 47(1), 178–185.10.1016/j.commatsci.2009.07.005
  • Kamali-Bernard, S., & Bernard, F. (2011). How to assess the long-term behaviour of a mortar submitted to leaching? European Journal of Environmental and Civil Engineering, 15(7), 1031–1043.10.1080/19648189.2011.9695291
  • Kamali-Bernard, S., Bernard, F., & Prince, W. (2009). Computer modelling of tritiated water diffusion test for cement based materials. Computational Materials Science, 45(2), 528–535.10.1016/j.commatsci.2008.11.018
  • Kamali-Bernard, S., Keinde, D., & Bernard, F. (2014). Effect of aggregate type on the concrete matrix/aggregates interface and its influence on the overall mechanical behavior. A numerical study. Key Engineering Materials, 617, 14–17.10.4028/www.scientific.net/KEM.617
  • Karami, B., Janghorban, M., Tounsi, A. (2017). Effects of triaxial magnetic field on the nisotropic nanoplates. Steel and Composite Structures, 25, 361–374.
  • Keinde, D., Kamali-Bernard, S., & Bernard, F. (2014). Effect of the interfacial transition zone and the nature of the matrix-aggregate interface on the overall elastic and inelastic behaviour of concrete under compression: A 3D numerical study. European Journal of Environmental and Civil Engineering, 18(10), 1167–1176.
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133.10.1103/PhysRev.140.A1133
  • Le Bellégo, C., Gérard, B., & Pijaudier-Cabot, G. (2001). Life-time experiments on mortar beams submitted to calcium leaching. In F.-J. Ulm, Z. P. Bazant, & F. H. Wittmann (Eds.), Creep, shrinkage and durability mechanics of cement and other quasi-brittle materials (pp. 493–498). Amsterdam, Netherlands: Elsevier.
  • Leelamma, K. K., Kuriakose, V. C., & Joseph, K. B. (1993). Lattice heat capacity of crystals: A q-oscillator Debye model. International Journal of Modern Physics B, 7(14), 2697–2706.10.1142/S0217979293003000
  • Liu, L., Chen, H., Sun, W., & Ye, G. (2013). Microstructure-based modeling of the diffusivity of cement paste with micro-cracks. Construction and Building Materials, 38, 1107–1116.10.1016/j.conbuildmat.2012.10.002
  • Liu, Z. L., Chen, X. R., & Wang, Y. L. (2006). First-principles calculations of elastic properties of LiBC. Physica B: Condensed Matter, 381(1–2), 139–143.10.1016/j.physb.2005.12.264
  • Mainguy, M., Tognazzi, C., Torrenti, J. M., & Adenot, F. (2000). Modelling of leaching in pure cement paste and mortar. Cement and Concrete Research, 30(1), 83–90.10.1016/S0008-8846(99)00208-2
  • Manzano, H. (2009). Atomistic simulation studies of the cement paste components ( PhD thesis). Universidad del Pais Vasco, Guipúzcoa, Spain.
  • Manzano, H., Dolado, J. S., Guerrero, A., & Ayuela, A. (2007). Mechanical properties of crystalline calcium-silicate-hydrates: Comparison with cementitious C-S-H gels. physica status solidi (a), 204(6), 1775–1780.10.1002/pssa.v204:6
  • Merlino, S., Bonaccorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11Å normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 577–590.10.1127/0935-1221/2001/0013-0577
  • Miller, M., Bobko, C., Vandamme, M., & Ulm, F. J. (2008). Surface roughness criteria for cement paste nanoindentation. Cement and Concrete Research, 38, 467–476.10.1016/j.cemconres.2007.11.014
  • Mouffoki, A., Adda Bedia, E. A., Houari, M. S. A., Tounsi, A., & Mahmoud, S. R. (2017). Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory. Smart Structures and Systems, 20(3), 369–383.
  • Naar, R. (2009). Modélisation du comportement mécanique du béton par approche multi-physique (couplage chimie-mécanique): application à la réaction alcali-silice. Paris, France: Ecole des Mines de Paris.
  • Nguyen, V. P., Stroeven, M., & Sluys, L. J. (2011). Multiscale continuous and discontinuous modeling of heterogeneous materials: A review on recent developments. Journal of Multiscale Modelling, 3(4), 229–270.10.1142/S1756973711000509
  • Niknezhad, D., Raghavan, B., Bernard, F., & Kamali-Bernard, S. (2015). Towards a realistic morphological model for the meso-scale mechanical and transport behavior of cementitious composites. Composites Part B: Engineering, 81, 72–83.10.1016/j.compositesb.2015.06.024
  • Panda, K. B., & Chandran, K. R. (2006). Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Computational Materials Science, 35(2), 134–150.10.1016/j.commatsci.2005.03.012
  • Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1–19. Retrieved from http://lammps.sandia.gov10.1006/jcph.1995.1039
  • Qian, Z., Schlangen, E., Ye, G., & van Breugel, K. (2017). Modeling framework for fracture in multiscale cement-based material structures. Materials, 10, 1–14.
  • Qomi, M. H. A., Ulm, F. J., & Pellenq, R. J. M. (2015). Physical origins of thermal properties of cement paste. Physical Review Applied, 3(6), 064610.
  • Raki, L., Beaudoin, J. J., Alizadeh, R., Makar, J. M., & Sato, T. (2010). Cement and concrete nanoscience and nanotechnology. Materials, 3, 918–942.10.3390/ma3020918
  • Sekkal, W., Zaoui, A., Benzerzour, M., & Abriak, N. E. (2016). Role of porosity on the stiffness and stability of (001) surface of the nanogranular C-S–H gel. Cement and Concrete Research, 87, 45–52.10.1016/j.cemconres.2016.04.014
  • Shahsavari, R., Buehler, M. J., Pellenq, R. J. M., & Ulm, F. J. (2009). First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. Journal of the American Ceramic Society, 92(10), 2323–2330.10.1111/jace.2009.92.issue-10
  • Stora, E., Bary, B., & He, Q. C. (2008). On estimating the effective diffusive properties of hardened cement pastes. Transport in Porous Media, 73(3), 279–295.10.1007/s11242-007-9170-z
  • Sun, G., Sun, W., Zhang, Y., & Liu, Z. (2012). Multi-scale modeling of the effective chloride ion diffusion coefficient in cement-based composite materials. Journal of Wuhan University of Technology-Mater. Sci. Ed, 27(2), 364–373.10.1007/s11595-012-0467-6
  • Vandamme, M., & Ulm, F. J. (2013). Nanoindentation investigation of creep properties of calcium silicate hydrates. Cement and Concrete Research, 52, 38–52.10.1016/j.cemconres.2013.05.006
  • Wriggers, P., & Moftah, S. O. (2006). Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elements in Analysis and Design, 42(7), 623–636.10.1016/j.finel.2005.11.008
  • Xu, Y., & Chung, D. D. L. (2000). Effect of sand addition on the specific heat and thermal conductivity of cement. Cement and Concrete Research, 30(1), 59–61.10.1016/S0008-8846(99)00206-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.