593
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

The deformation of granular materials under repeated traffic load by discrete element modelling

, , &
Pages 1135-1160 | Received 24 Aug 2017, Accepted 14 Mar 2018, Published online: 11 Apr 2018

References

  • Abdelkrim, M. , Bonnet, G. , & Buhan, P. D. (2003). A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading. Computers & Geotechnics , 30 (6), 463–476.10.1016/S0266-352X(03)00010-7
  • Abdelkrim, M. , Buhan, P. D. , & Bonnet, G. (2006). A general method for calculating the traffic load-induced residual settlement of a platform, based on a structural analysis approach. Soils and Foundations , 46 (4), 401–414.10.3208/sandf.46.401
  • Arulrajah, A. , Ali, M. M. Y. , Piratheepan, J. , & Bo, M. W. (2012). Geotechnical properties of waste excavation rock in pavement subbase applications. Journal of Materials in Civil Engineering , 24 (7), 924–932.10.1061/(ASCE)MT.1943-5533.0000419
  • Bian, X.-C. , Hu, T. , & Chen, Y.-M. (2008). Stress path in soil element of ground under moving traffic loads. China Civil Engineering Journal , 41 (11), 86–92.
  • Cai, Y. , Sun, Q. , Guo, L. , Juang, C. H. , & Wang, J. (2015). Permanent deformation characteristics of saturated sand under cyclic loading. Canadian Geotechnical Journal , 52 (6), 795–807.10.1139/cgj-2014-0341
  • Chang, C. S. , & Whitman, R. V. (1988). Drained permanent deformation of sand due to cyclic loading. Journal of Geotechnical Engineering , 114 , 1164–1180.10.1061/(ASCE)0733-9410(1988)114:10(1164)
  • Chaudhary, S. K. , Kuwano, J. , Hashimoto, S. , Hayano, Y. , & Nakamura, Y. (2002). Effects of initial fabric and shearing direction on cyclic deformation characteristics of sand. Soils and Foundations , 42 , 147–157.10.3208/sandf.42.147
  • Clayton, C. R. I. , Xu, M. , & Bloodworth, A. (2006). A laboratory study of the development of earth pressure behind integral bridge abutments. Géotechnique , 56 , 561–571.10.1680/geot.2006.56.8.561
  • Cundall, P. A. , & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Géotechnique , 29 , 47–65.10.1680/geot.1979.29.1.47
  • Dounias, G. T. , & Potts, D. M. (1993). Numerical analysis of drained direct and simple shear tests. Journal of Geotechnical Engineering , 119 , 1870–1891.10.1061/(ASCE)0733-9410(1993)119:12(1870)
  • Duku, P. M. , Stewart, J. P. , Whang, D. H. , & Yee, E. (2008). Volumetric strains of clean sands subject to cyclic loads. Journal of Geotechnical and Geoenvironmental Engineering , 134 , 1073–1085.10.1061/(ASCE)1090-0241(2008)134:8(1073)
  • England, G. L. , Dunstan, T. , Wan, R. G. , & Tsang, C. M. (1997). Drained granular material under cyclic loading with temperature-induced soil/structure interaction. Applied Mechanics Reviews , 50 , 553–579.10.1115/1.3101668
  • Gong, G. B . (2008). DEM simulation of drained and undrained behavior (PhD thesis). Birmingham: University of Birmingham.
  • Gu, X. , Hu, J. , & Huang, M. (2017). Anisotropy of elasticity and fabric of granular soils. Granular Matter , 19 (2). doi:10.1007/s10035-017-0717-6
  • Gu, X. , Huang, M. , & Qian, J. (2014a). Discrete element modeling of shear band in granular materials. Theoretical and Applied Fracture Mechanics , 72 , 37–49.10.1016/j.tafmec.2014.06.008
  • Gu, X. , Huang, M. , & Qian, J. (2014b). DEM investigation on the evolution of microstructure in granular soils under shearing. Granular Matter , 16 (1), 91–106.10.1007/s10035-013-0467-z
  • Gu, C. , Wang, J. , & Cai, Y. (2016). Deformation characteristics of overconsolidated clay sheared under constant and variable confining pressure. Soils and Foundations , 56 (3), 427–439.10.1016/j.sandf.2016.04.009
  • Gu, X. , & Yang, J. (2013). A discrete element analysis of elastic properties of granular materials. Granular Matter , 15 (2), 139–147.10.1007/s10035-013-0390-3
  • Gu, X. , Yang, J. , & Huang, M. (2013). DEM simulations of the small strain stiffness of granular soils: Effect of stress ratio. Granular Matter , 15 (3), 287–298.10.1007/s10035-013-0407-y
  • Gutierrez, M. , Wang, J. , & Yoshimine, M. (2009). Modeling of the simple shear deformation of sand: Effects of principal stress rotation. Acta Geotechnica , 4 , 193–201.10.1007/s11440-009-0094-3
  • Hirakawa, D. , & Miyata, Y. (2012). Effects of subbase geogrid reinforcement on residual deformation characteristics of asphalt pavement. Advances in Transportation Geotechnics , II , 474–479.10.1201/b12754
  • Huang, X. , Hanley, K. J. , O’Sullivan, C. , & Kwok, C. Y. (2014a). DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials. Granular Matter , 16 , 641–655.10.1007/s10035-014-0520-6
  • Huang, X. , Hanley, K. J. , O’Sullivan, C. , & Kwok, C. Y. (2014b). Discrete-element method analysis of the state parameter. Géotechnique , 64 (12), 954–965.10.1680/geot.14.P.013
  • Ishibashi, I. , & Capar, O. F. (2003). Anisotropy and its relation to liquefaction resistance of granular material. Soils and Foundations , 43 , 149–159.10.3208/sandf.43.5_149
  • Ishihara, K. , & Towhata, I. (1983). Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations , 23 , 11–26.10.3208/sandf1972.23.4_11
  • Lackenby, J. , Indraratna, B. , McDowell, G. , & Christie, D. (2007). Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Géotechnique , 57 , 527–536.10.1680/geot.2007.57.6.527
  • Lee, K. L. , & Seed, H. B. (1967). Cyclic stress conditions causing liquefaction of sand. Journal of Soil Mechanics and Foundations Division ASCE , 93 (SM1), 47–70.
  • Lekarp, F. , Isacsson, U. , & Dawson, A. (2000). State of the art. I: Resilient response of unbound aggregates. Journal of Transportation Engineering , 126 , 66–75.10.1061/(ASCE)0733-947X(2000)126:1(66)
  • Li, X. S. , & Dafalias, Y. F. (2012). Anisotropic critical state theory: Role of fabric. Journal of Engineering Mechanics , 138 , 263–275.10.1061/(ASCE)EM.1943-7889.0000324
  • Lobo-Guerrero, S. , & Vallejo, L. E. (2006). Discrete element method analysis of railtrack ballast degradation during cyclic loading. Granular Matter , 8 , 195–204.10.1007/s10035-006-0006-2
  • Majmudar, T. S. , & Behringer, R. P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature , 435 , 1079–1082.10.1038/nature03805
  • Martin, G. R. , Finn, W. D. L. , & Seed, H. B. (1975). Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division , 101 (5), 423–438.
  • Minh, N. H. , & Cheng, Y. P. (2013). Micro-characteristics of monodisperse and best-packing mixture samples under one dimensional compression. AIP Conference Proceedings, American Institute of Physics , 1542 , 265–268.10.1063/1.4811918
  • McDowell, G. R. , Lim, W. L. , Collop, A. C. , Armitage, R. , & Thom, N. H. (2005). Laboratory simulation of train loading and tamping on ballast. Proceedings of the Institution of Civil Engineers-Transport , 158 , 89–95.10.1680/tran.2005.158.2.89
  • Muir Wood, D. , & Maeda, K. (2008). Changing grading of soil: Effect on critical states. Acta Geotechnica , 3 , 3–14.10.1007/s11440-007-0041-0
  • Nicot, F. , Hadda, N. , Bourrier, F. , Sibille, L. , & Darve, F. (2011). Failure mechanisms in granular media: A discrete element analysis. Granular Matter , 13 (3), 255–260.
  • Nicot, F. , Sibille, L. , Donze, F. , & Darve, F. (2007). From microscopic to macroscopic second-order work in granular assemblies. Mechanics of Materials , 39 (7), 664–684.
  • Oda, M. (1972). The mechanism of fabric changes during compressional deformation of sand. Soils and Foundations , 12 , 1–18.10.3208/sandf1972.12.1
  • Oda, M. , Nemat-Nasser, S. , & Konishi, J. (1985). Stress-induced anisotropy in granular masses. Soils and Foundations , 25 , 85–97.10.3208/sandf1972.25.3_85
  • O’Sullivan, C. , Liang, C. , & O’Neill, S. C. (2008). Discrete element analysis of the response of granular materials during cyclic loading. Soils and Foundations , 48 , 511–530.10.3208/sandf.48.511
  • Ouadfel, H. , & Rothenburg, L. (2001). Stress–force–fabric relationship for assemblies of ellipsoids. Mechanics of Materials , 33 , 201–221.10.1016/S0167-6636(00)00057-0
  • Qian, J. G. , Wang, Y. , Wang, J. , & Huang, M. S. (2017). The influence of traffic moving speed on shakedown limits of flexible pavements. International Journal of Pavement Engineering , 106 , 1–12.10.1080/10298436.2017.1293259
  • Qian, J. G. , You, Z. P. , & Huang, M. S. (2013). Anisotropic characteristics of granular materials under simple shear. Journal of Central South University , 20 , 2275–2284.10.1007/s11771-013-1734-1
  • Qian, J. G. , You, Z. P. , Huang, M. S. , & Gu, X. Q. (2013). A micromechanics-based model for estimating localized failure with effects of fabric anisotropy. Computers and Geotechnics , 50 , 90–100.10.1016/j.compgeo.2013.01.001
  • Radjai, F . (2008). Particle-scale origins of shear strength in granular media. arXiv:0801.4722v1 [cond-mat.soft].
  • Roscoe, K. H. (1970). The influence of strains in soil mechanics. Géotechnique , 20 , 129–170.10.1680/geot.1970.20.2.129
  • Rothenburg, L. , & Bathurst, R. (1989). Analytical study of induced anisotropy in idealized granular materials. Géotechnique , 39 , 601–614.10.1680/geot.1989.39.4.601
  • Rothenburg, L. , & Kruyt, N. P. (2004). Critical state and evolution of coordination number in simulated granular materials. International Journal of Solids and Structures , 41 , 5763–5774.10.1016/j.ijsolstr.2004.06.001
  • Silver, M. L. , & Seed, H. B. (1971). Volume changes in sands during cyclic loading. Journal of the Soil Mechanics & Foundations Division , 97 , 1171–1182.
  • Sitharam, T. G. (2003). Discrete element modelling of cyclic behaviour of granular materials. Geotechnical and Geological Engineering , 21 , 297–329.10.1023/B:GEGE.0000006036.00597.0b
  • Tao, M. , Mohammad, L. N. , Nazzal, M. D. , Zhang, Z. , & Wu, Z. (2010). Application of shakedown theory in characterizing traditional and recycled pavement base materials. Journal of Transportation Engineering , 136 , 214–222.10.1061/(ASCE)0733-947X(2010)136:3(214)
  • Tatsuoka, F. , & Ishihara, K. (1974). Drained deformation of sand under cyclic stresses reversing direction. Soils and Foundations , 14 , 51–65.10.3208/sandf1972.14.3_51
  • Thakur, P. K. , Vinod, J. S. , & Indraratna, B. (2013). Effect of confining pressure and frequency on the deformation of ballast. Géotechnique , 63 , 786–790.10.1680/geot.12.T.001
  • Thornton, C. (2000). Numerical simulations of deviatoric shear deformation of granular media. Géotechnique , 50 , 43–53.10.1680/geot.2000.50.1.43
  • Vaid, Y. P. , Chung, E. K. F. , & Kuerbis, R. H. (1990). Stress path and steady state. Canadian Geotechnical Journal , 27 (1), 1–7.10.1139/t90-001
  • Wan, R. G. , & Guo, J. (2001). Drained cyclic behavior of sand with fabric dependence. Journal of Engineering Mechanics , 127 , 1106–1116.10.1061/(ASCE)0733-9399(2001)127:11(1106)
  • Wang, C. , & Chen, Y. (2007). Stress state variation and principal stress axes rotation of ground induced by moving loads. Chinese Journal of Rock Mechanics & Engineering , 26 (8), 1698–1704.
  • Wang, J. , Cai, Y. , & Yang, F. (2013). Effects of initial shear stress on cyclic behavior of saturated soft clay. Marine Georesources and Geotechnology , 31 (1), 86–106.10.1080/1064119X.2012.676153
  • Wang, J. , Guo, L. , & Cai, Y. (2013). Strain and pore pressure development on soft marine clay in triaxial tests with a large number of cycles. Ocean Engineering , 74 , 125–132.10.1016/j.oceaneng.2013.10.005
  • Wichtmann, T. , Niemunis, A. , & Triantafyllidis, T. (2005). Strain accumulation in sand due to cyclic loading: Drained triaxial tests. Soil Dynamics and Earthquake Engineering , 25 , 967–979.10.1016/j.soildyn.2005.02.022
  • Xu, M. , Hong, J. , & Song, E. (2017). DEM study on the effect of particle breakage on the macro- and micro-behavior of rockfill sheared along different stress paths. Computers & Geotechnics , 89 , 113–127.10.1016/j.compgeo.2017.04.012
  • Yan, W. M. , & Dong, J. J. (2010). Effect of particle grading on the response of an idealized granular assemblage. International Journal of Geomechanics , 11 (4), 276–285.
  • Yang, J. , & Gu, X. Q. (2013). Shear stiffness of granular material at small strains: Does it depend on grain size? Géotechnique , 63 (2), 165–179.10.1680/geot.11.P.083
  • Yang, Z. , Li, X. S. , & Yang, J. (2008). Quantifying and modelling fabric anisotropy of granular soils. Géotechnique , 58 , 237–248.10.1680/geot.2008.58.4.237
  • Youd, T. L. (1977). Packing changes and liquefaction susceptibility. Journal of the Geotechnical Engineering Division ASCE , 103 , 918–922.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.