217
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Wind-induced fatigue assessment of welded connections in steel tall buildings using the theory of critical distances

, , &
Pages 1180-1205 | Received 23 Jul 2017, Accepted 14 Mar 2018, Published online: 15 May 2018

References

  • Alexander, L. A. , & Wood, J. A. (2009). A study of the low-cycle fatigue failure of a galvanised steel lighting column. Engineering Failure Analysis , 16 (7), 2153–2162.10.1016/j.engfailanal.2009.02.012
  • Bellett, D., Taylor, D., Marco, S., Mazzeo, E., Guillois, J.,& Pircher, T. (2005). The fatigue behaviour of three-dimensional stress concentrations. International Journal of Fatigue 27 (3), 207–221.
  • Caracoglia, L. , & Jones, N. P. (2006). Wind-induced Failures of Highway Light Poles during Winter Storms. ASME Pressure Vessels and Piping Conference, Volume 9: 6th FSI, AE and FIV and N Symposium  (pp. 197–206). Vancouver: American Society of Mechanical Engineers.
  • Chaves, V. , & Taylor, D. (2002). Use of simplified models in fatigue prediction of real components. Proceedings of Fatigue , 5 , 2799–2806.
  • Davenport, A. G. (1961). The spectrum of horizontal gustiness near the ground in high winds. Quarterly Journal of the Royal Meteorological Society , 87 (372), 194–211.10.1002/(ISSN)1477-870X
  • Dong, P. (2001). A structural stress definition and numerical implementation for fatigue analysis of welded joints. International Journal of Fatigue , 23 (10), 865–876.10.1016/S0142-1123(01)00055-X
  • Dong, P. , & Hong, J. K. (2013). The master S–N curve approach to fatigue of piping and vessel welds. Welding in the World , 48 (1–2), 28–36.
  • Dong, W. , Moan, T. , & Gao, Z. (2011). Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain. Engineering Structures , 33 (6), 2002–2014.10.1016/j.engstruct.2011.02.037
  • Dong, W. , Moan, T. , & Gao, Z. (2012). Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliability Engineering & System Safety , 106 (106), 11–27.10.1016/j.ress.2012.06.011
  • Dong, W. , Xing, Y. , Moan, T. , & Gao, Z. . (2013). Time domain-based gear contact fatigue analysis of a wind turbine drivetrain under dynamic conditions. International Journal of Fatigue , 48 (1), 133–146.
  • Dyrbye, C. , & Hansen, S. O. (1997). Wind loads on structures . Chichester: Wiley (John) & Sons.
  • Fang, Z. , Li, A. , Li, W. , & Shen, S. (2017). Wind-induced fatigue analysis of high-rise steel structures using equivalent structural stress method. Applied Sciences , 7 (1), 71.
  • Fisher, J. W. , Dexter, R. J. , & Kaufmann, E. J. (1995). ‘Fracture mechanics of welded structural steel connections’, Background report SAC 95-09 . Washington, DC: SAC.
  • Fricke, W. (2012). IIW recommendations for the fatigue assessment of welded structures by notch stress analysis: IIW-2006-09 . Sawston, Cambridge: Woodhead Publishing.
  • Fricke, W. , Gao, L. , & Paetzold, H. (2017). Fatigue assessment of local stresses at fillet welds around plate corners. International Journal of Fatigue , 101 , 169–176.10.1016/j.ijfatigue.2017.01.011
  • Gilani, A. , & Whittaker, A. (2000). Fatigue-life evaluation of steel post structures. I: Background and analysis. Journal of Structural Engineering , 126 (3), 322–330.10.1061/(ASCE)0733-9445(2000)126:3(322)
  • Hobbacher, A. (2016). Recommendations for fatigue design of welded joints and components . Berlin: Springer.10.1007/978-3-319-23757-2
  • Hogan, W. P. (1971). The influence of wind on tall building design (doctoral dissertation). Retrieved from https://ir.lib.uwo.ca/digitizedtheses/
  • Holmes, J. D. (2002). Fatigue life under along-wind loading – closed-form solutions. Engineering Structures , 24 (1), 109–114.10.1016/S0141-0296(01)00073-6
  • Holmes, J. D. (2015). Wind loading of structures . Boca Raton, FL: CRC Press.
  • Hughes, T. J. R. (2012). The finite element method: Linear static and dynamic finite element analysis . North Chelmsford, MA​: Courier Corporation.
  • Jia, J. (2014). Investigations of a practical wind-induced fatigue calculation based on nonlinear time domain dynamic analysis and a full wind-directional scatter diagram. Ships & Offshore Structures , 9 (3), 272–296.10.1080/17445302.2013.783453
  • Kadowaki, H. , & Liu, W. K. (2004). Bridging multi-scale method for localization problems. Computer Methods in Applied Mechanics and Engineering , 193 (30–32), 3267–3302.10.1016/j.cma.2003.11.014
  • Lazzarin, P. , Tovo, R. , & Meneghetti, G. (1997). Fatigue crack initiation and propagation phases near notches in metals with low notch sensitivity. International Journal of Fatigue , 19 (8–9), 647–657.10.1016/S0142-1123(97)00091-1
  • Li, J. Y. (2008). Contrast study on fatigue performance of engineering structure material welded joint (Unpublished master's thesis). Taiyuan, Shanxi: Taiyuan University of Technology.
  • Li, Z. X. , Zhou, T. Q. , Chan, T. H. T. , & Yu, Y. (2007). Multi-scale numerical analysis on dynamic response and local damage in long-span bridges. Engineering Structures , 29 (7), 1507–1524.
  • Neuber, H. (1958). Theory of notch stresses: Principles for exact calculation of strength with reference to structural form and material (2nd ed.). Berlin: Springer.
  • Neuber, H. (1961). Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. Journal of Applied Mechanics , 28 (4), 544.10.1115/1.3641780
  • Peil, U. , & Behrens, M. (2002). Fatigue of tubular steel lighting columns under wind load. Wind & Structures An International Journal , 5 (5), 463–478.
  • Peterson, R. E. (1959). Notch sensitivity. Metal Fatigue . New York, NY​: McGraw Hill.
  • Radaj, D. , & Vormwald, M. (2013). Advanced methods of fatigue assessment . Berlin Heidelberg: Springer.10.1007/978-3-642-30740-9
  • Repetto, M. P. , & Solari, G. (2001). Dynamic alongwind fatigue of slender vertical structures. Engineering Structures , 23 (12), 1622–1633.10.1016/S0141-0296(01)00021-9
  • Repetto, M. P. , & Solari, G. (2007). Wind-induced fatigue of structures under neutral and non-neutral atmospheric conditions. Journal of Wind Engineering & Industrial Aerodynamics , 95 (9–11), 1364–1383.10.1016/j.jweia.2007.02.012
  • Repetto, M. P. , & Solari, G. (2010). Wind-induced fatigue collapse of real slender structures. Engineering Structures , 32 (12), 3888–3898.10.1016/j.engstruct.2010.09.002
  • Righiniotis, T. D. , Imam, B. M. , & Chryssanthopoulos, M. K. (2008). Fatigue analysis of riveted railway bridge connections using the theory of critical distances. Engineering Structures , 30 (10), 2707–2715.10.1016/j.engstruct.2008.03.005
  • Robertson, A. P., Hoxey, R. P., Short, J. L., Burgess, L. R., Smith, B. W., & Ko, R. H. Y. (2001). Wind-induced fatigue loading of tubular steel lighting columns. Wind & Structures An International Journal , 4 (2), 163–176.
  • Smith, J. E. (1955, January ). Wind stresses in steel building frames . New Fritz Laboratory.
  • Sonsino, C. M. , Fricke, W. , Bruyne, F. D. , Hoppe​, A., Ahmadi​, A., & Zhang, G. (2012). Notch stress concepts for the fatigue assessment of welded connections – Background and applications. International Journal of Fatigue ,  34 (1), 2–16.
  • Susmel, L. (2009). The modified Wöhler curve method calibrated by using standard fatigue curves and applied in conjunction with the theory of critical distances to estimate fatigue lifetime of aluminium weldments. International Journal of Fatigue , 31 (1), 197–212.10.1016/j.ijfatigue.2008.04.004
  • Susmel, L. , & Taylor, D. (2010). The theory of critical distances as an alternative experimental strategy for the determination of KIc, and ΔKth. Engineering Fracture Mechanics , 77 (9), 1492–1501.10.1016/j.engfracmech.2010.04.016
  • Tanaka, K. (1983). Engineering formulae for fatigue strength reduction due to crack-like notches. International Journal of Fracture , 22 (2), R39–R46.10.1007/BF00942722
  • Taylor, D. (1999). Geometrical effects in fatigue: A unifying theoretical model. International Journal of Fatigue , 21 (5), 413–420.10.1016/S0142-1123(99)00007-9
  • Taylor, Wang (2000). The validation of some methods of notch fatigue analysis. Fatigue & Fracture of Engineering Materials & Structures , 23 (5), 387–394.10.1046/j.1460-2695.2000.00302.x
  • Taylor, D. (2005). Analysis of fatigue failures in components using the theory of critical distances. Engineering Failure Analysis , 12 (6), 906–914.10.1016/j.engfailanal.2004.12.007
  • Taylor, D. (2007). The theory of critical distances: A new perspective in fracture mechanics / (1st ed.). London: Elsevier.
  • Taylor, D. , Bologna, P. , & Knani, K. B. (2000). Prediction of fatigue failure location on a component using a critical distance method. International Journal of Fatigue , 22 (9), 735–742.10.1016/S0142-1123(00)00062-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.