385
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Size effect on the contribution of the aggregate interlock mechanism in reinforced concrete beams without shear reinforcement

, , ORCID Icon &
Pages 1363-1380 | Received 07 Apr 2017, Accepted 24 Apr 2018, Published online: 08 May 2018

References

  • ACI Committee 318, Building Code Requirements for Structural Concrete. (2002). (ACI 318­02) and commentary (318R­02). Farmington Hills, MI: American Concrete institute.
  • Alam, S. Y., Loukili, A., & Grondin, F. (2012). Monitoring size effect on crack opening in concrete by digital image correlation. European Journal of Environmental and Civil Engineering., 16(7), 818–836.10.1080/19648189.2012.672211
  • Alam, S. Y., Loukili, A., Grondin, F., & Rozière, E. (2015). Use of the digital image correlation and acoustic emission technique to study the effect of structural size on cracking of reinforced concrete. Engineering Fracture Mechanics, 143, 17–31.10.1016/j.engfracmech.2015.06.038
  • Alam, S. Y., Saliba, J., & Loukili, A. (2014). Fracture examination in concrete through combined digital image correlation and acoustic emission techniques. Construction and Building Materials, 69, 232–242.10.1016/j.conbuildmat.2014.07.044
  • Alam, S. Y., & Loukili, A. (2017). Transition from energy dissipation to crack openings during continuum–discontinuum fracture of concrete. International Journal of Fracture, 206(1), 49–66.10.1007/s10704-017-0200-8
  • ASCE-ACI Committee445. (1998). Recent approaches to shear design of structural concrete. Journal of Structural Engineering, 124(5), 1375–1417.
  • Baumann, T., & Rüsch, H. (1970). Versuche zum Studium der Verdübelungswirkung der Biegezugbewehrung eines Stahlbetonbalkens. Deutscher Ausschuss für Stahlbeton ( Helft 210).
  • Bazant, Z. P., & Gambarova, P. G. (1980). Rough crack models in reinforced concrete. ASCE Journal Struct Eng, 106(4), 819–842.
  • Bazant, Z. P., & Kazemi, T. (1991). Size effect on diagonal shear failure of beams without stirrups. Journal of the American Concrete Institute, 89(3), 268–276.
  • Bazant, Z. P., & Kim, J. K. (1984). Size effect in shear failure of longitudinal reinforced beams. ACI Journal, 81, 9–22.
  • Bentz, E. C., Vecchio, F. J., & Collins, M. P. (2006). Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Structural Journal, 103(4), 614–624.
  • Campana, S., Fernãndez Ruiz, M., Anastasi, A., & Muttoni, A. (2012). Analysis of shear transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Magazine Concrete Research, 56(6), 386–404.
  • Chana, P. S. (1987). Investigation of the mechanism of shear failure of reinforced concrete beams. Magazine of Concrete Research, 39(141), 196–204.10.1680/macr.1987.39.141.196
  • Corr, D., Accardi, M., Graham-Bardy, L., & Shah, S. P. (2007). Digital image correlation analysis of interfacial debonding properties and fracture behavior in concrete. Engineering Fracture Mechanics, 74(1–2), 109–121.10.1016/j.engfracmech.2006.01.035
  • Dei Poli, S., Gambarova, P., & Karakoç, C. (1987). Aggregate interlock role in R.C. Thin‐webbed beams in shear. Journal of Structural Engineering, 113(1), 1–19.10.1061/(ASCE)0733-9445(1987)113:1(1)
  • Eurocode 2. (2004). European Standard EN 1992-1-1:2004: Design of concrete structures - Part 1-1: General rules and rules for buildings.  Brussels: Comite Europeen de Normalisation.
  • Fédération Internationale du Béton (fib). (2010). Shear and punching shear in RC and FRC elements. fib, Bulletin 57. Lausanne; p. 268.
  • Fernãndez Ruiz, M., Muttoni, A., & Segaseta, J. (2015). Shear Strength of Concrete members without transverse reinforcement: A mechanical approach to consistently account for size and strain effects. Engineering Structures, 99, 360–372.10.1016/j.engstruct.2015.05.007
  • Gambarova, P. G, & Karakoç, C. (1983). A new approach to the analysis of the confinement role in regularly cracking concrete elements. 7th Struct Mech in Reactor Tech, H, 61–251.
  • Hordijk, D. A. (1992). Tensile and tensile fatigue behaviour of concrete, experiments, modelling and analyses. Heron, 37(1), 3–79.
  • Hubert, P., Hubert, T., & Kollegger, J. (2016). Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Engineering Structures, 113, 41–58.10.1016/j.engstruct.2016.01.025
  • Jelic, I., Pavlovic, M. N., & Kostovos, M. D. (1999). A study of dowel action in reinforced concrete beams. Magazine of Concrete Research, 51(2), 131–141.10.1680/macr.1999.51.2.131
  • Kani, G. N. J. (1966). Basic facts concerning shear failure. Journal of the American Concrete Institute, 63(6), 128–147.
  • Krefeld, W., & Thurston Charles, W. (1966). Contribution of longitudinal steel to shear resistance of reinforced concrete beams. ACI Journal, 63(3), 325–344.
  • Lantsoght, E. O. L., Van der Veen, C., Walraven, J. C., & De Boer, A. (2016). Case study on aggregate interlock capacity for the shear assessment of cracked reinforced-concrete bridge cross sections. Journal of Bridge Engineering, 21(5), 04016004.10.1061/(ASCE)BE.1943-5592.0000847
  • Muttoni, A., & Ruiz, M. F. (2008). Shear capacity of members without transverse reinforcement as function of critical shear crack width. ACI Structural Journal, 105(2), 163–172.
  • Paulay, T, & Loaber, P. J. (1990) Shear transfer by aggregate interlock. American concrete institute special publication SP-42: Shear in reinforced concrete, 1, 1–16.
  • Paulay, T., Park, R., & Philips, M. H. (1974). Horizontal construction joints in cast-in-place reinforced concrete. American concrete institute special publication SP-42: Shear in Reinforced concrete, 2, 599–616.
  • Ritter, W. (1899). Die Baueweise Hennebique, Schweizerische Bauzeitung. Zürich, 33/34, 41–43 pp., 49–52 pp., 59–61 pp.
  • Roux, S., Réthoré, J., & Hild, F. (2009). Digital image correlation and fracture: An advanced technique for estimating stress intensity factors of 2d and 3d cracks. Journal of Physics D: Applied Physics, 42(21), 214004.10.1088/0022-3727/42/21/214004
  • Taylor, H. J. P. (1969). Investigation of the dowel shear forces carried by the tensile steel in RC Beams ( Technical report No TRA). London: Cement and Concrete Association.
  • Taylor, H. J. P. (1970). Investigation of the forces carried across cracks in reinforced concrete beams in shear by interlock of aggregate (Technical Reports). London: Cement and Concrete Association, 42–77.
  • Taylor, H. P. J. (1974). The fundamental behavior of reinforced concrete beams in bending and shear. American Concrete Institute Special Publication, 42, 43–77.
  • Tureyen, A. K., & Frosch, R. J. (2003). Concrete shear strength: Another perspective. ACI Structural Journal, 100(5), 609–615.
  • Walraven, J. (1980). Aggregate interlock: A theoretical and experimental analysis (Ph.D. thesis). Delft University of Technology, Delft; pp. 196.
  • Walraven, J. C. (1981). Fundamental analysis of aggregate interlock. ASCE Journal Struct Div., 107(11), 2245–2270.
  • Zararis, P. D. (1997). Aggregate interlock and steel shear forces in the analysis of RC membrane elements. ACI Structural Journal, 94(2), 159–170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.