211
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analyses of novel prefabricated structural wall panels in residential buildings based on laboratory tests in scale 1:1

, , &
Pages 1450-1482 | Received 27 Jun 2016, Accepted 02 May 2018, Published online: 15 May 2018

References

  • Abaqus Theory Manual. (2011). Version 6.11. Dassault Systèmes, 1080 Main Street, Pawtucket, RI 02860-4847, U.S.A.
  • Bažant, Z. P., & Jirasek, M. (2002). Non-local integral formulations of plasticity and damage: Survey of progress. Journal of Engineering Mechanics, 128, 1119–1149.10.1061/(ASCE)0733-9399(2002)128:11(1119)
  • Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16, 155–177.
  • Bobinski, J., & Tejchman, J. (2016a). Comparison of continuous and discontinuous constitutive models to simulate concrete behaviour under mixed mode failure conditions. International Journal of Numerical and Analytical Methods in Geomechanics, 40, 406–435.10.1002/nag.v40.3
  • Bobinski, J., & Tejchman, J. (2016b). A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and extended finite element method. Finite Elements in Analysis and Design, 114, 1–21.10.1016/j.finel.2016.02.001
  • Bobiński, J., & Tejchman, J. (2004). Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity. Computers and Concrete, 1(4), 1–22.
  • Borino, G., Failla, B. & Parrinello, F. (2002). A symmetric formulation for non-local damage models, In H. A. Mang, F. G. Rammerstorfer & J. Eberhardsteiner (Eds.), Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V). Vienna: Vienna University of Technology. ISBN 3-9501554-0-6. Retrieved from http://wccm.tuwien.ac.at
  • Brinkgreve, R. B. J. (1994). Geomaterial models and numerical analysis of softening (PhD thesis). Delft University of Technology.
  • Carol, I., & Willam, K. (1996). Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage. International Journal Solids Structures, 33(20–22), 2939–2957.10.1016/0020-7683(95)00254-5
  • Chen, J. F., Morozov, E. V., & Shankar, K. (2012). A combined elastoplastic damage model for progressive failure analysis of composite materials and structures. Composite Structures, 94, 3478–3489.10.1016/j.compstruct.2012.04.021
  • Geers, M. G. D. (1997). Experimental analysis and computational modeling of damage fracture. PhD Thesis, Eindhoven University of Technology, Eindhoven.
  • Giry, C., Dufour, F., & Mazars, J. (2011). Stress-based nonlocal damage model. International Journal of Solids and Structures, 48, 3431–3443.10.1016/j.ijsolstr.2011.08.012
  • Grassl, P., Xenos, D., Nyström, U., Rempling, R., & Gylltoft, K. (2013). CDPM2: A damage-plasticity approach to modelling the failure of concrete. International Journal of Solids and Structures, 50, 3805–3816.10.1016/j.ijsolstr.2013.07.008
  • Grassl, P., Xenos, D., Jirásek, M., & Horák, M. (2014). Evaluation of nonlocal approaches for modelling fracture near nonconvex boundaries. International Journal of Solids and Structures, 51, 3239–3251.10.1016/j.ijsolstr.2014.05.023
  • Havlásek, P., Grassl, P., & Jirásek, M. (2016). Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models. Engineering Fracture Mechanics, 72–85.10.1016/j.engfracmech.2016.02.029
  • Jirasek, M., & Bauer, M. (2012). Numerical aspects of the crack band approach. Computers and Structures, 110–111, 60–78.10.1016/j.compstruc.2012.06.006
  • Korol, E., Tejchman, J., & Mróz, Z. (2014). FE analysis of size effects in reinforced concrete beams without shear reinforcement based on stochastic elasto-plasticity with non-local softening. Finite Elements in Analysis and Design, 88, 25–41.10.1016/j.finel.2014.05.005
  • Korol, E., Tejchman, J., & Mroz, Z. (2017). Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement. Engineering Structures, 141, 272–291.10.1016/j.engstruct.2017.03.011
  • Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8), 892–900.10.1061/(ASCE)0733-9399(1998)124:8(892)
  • Mahnken, R., & Kuhl, E. (1999). Parameter identification of gradient enhanced damage models. European Journal of Mechanics A/Solids, 18, 819–835.10.1016/S0997-7538(99)00127-8
  • Majewski, T., Bobinski, J., & Tejchman, J. (2008). FE-analysis of failure behaviour of reinforced concrete columns under eccentric compression. Engineering Structures, 30(2), 300–317.10.1016/j.engstruct.2007.03.024
  • Marzec, I., Bobinski, J., & Tejchman, J. (2007). Simulations of crack spacing in reinforced concrete beams using elastic-plasticity and damage with non-local softening. Computers and Concrete, 4(5), 377–403.10.12989/cac.2007.4.5.377
  • Marzec, I., Skarżyński, Ł., Bobiński, J., & Tejchman, J. (2013). Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches. Computers and Concrete, 12(5), 585–612.10.12989/cac.2013.12.5.585
  • Marzec, I., & Tejchman, J. (2012). Enhanced coupled elasto-plastic-damage models to describe concrete behaviour in cyclic laboratory tests: Comparison and improvement. Archives of Mechanics, 64(3), 227–259.
  • Marzec, I., & Tejchman, J. (2013). Computational modelling of concrete behaviour under static and dynamic conditions. Bulletin of the Polish Academy of Sciences-Technical Sciences, 61(1), 85–96.
  • Mazars, J., & Pijaudier-Cabot, G. (1996). From damage to fracture mechanics and conversely: A combined approach. International Journal of Solids and Structures, 33(20), 3327–3342.10.1016/0020-7683(96)00015-7
  • Mihai, I. C., Jefferson, A. D., & Lyons, P. (2016). A plastic-damage constitutive model for the finite element analysis of fibre reinforced concrete. Engineering Fracture Mechanics159, 35–62. doi: 10.1016/j.engfracmech.2015.12.035
  • Pamin, J., & de Borst, R. (1999). Stiffness degradation in gradient-dependent coupled damage-plasticity. Archives of Mechanics, 51(3–4), 419–446.
  • Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M., & Geers, M. G. D. (1998). Gradient enhanced damage modelling of concrete fracture. Mechanics of Cohesive-frictional Materials, 3, 323–342.10.1002/(ISSN)1099-1484
  • Pijauder-Cabot, G., & Dufour, F. (2010). Non-local damage model boundary and evolving boundary effects. European Journal of Environmental and Civil Engineering, 14, 729–749.
  • Polizzotto, C., Borino, G., & Fuschi, P. (1998). A thermodynamically consistent formulation of nonlocal and gradient plasticity. Mechanics Research Communications, 25(1), 75–82.10.1016/S0093-6413(98)00009-3
  • Sewaco System. Patent implementations, PCT/PL2012/000076, P.396140, P.400541, P.400558. Retrieved from www.sewaco.pl
  • Skarżyński, Ł., Marzec, I., & Tejchman, J. (2017). Experiments and numerical analyses for composite RC-EPS slabs. Computers and Concrete, 20(6), 689–704.
  • Skarżyński, Ł., Syroka, E., & Tejchman, J. (2011). Measurements and calculations of the width of fracture process zones on the surface of notched concrete beams. Strain, 47, 319–332.
  • Skarżyński, Ł., & Tejchman, J. (2010). Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending. European Journal of Mechanics/A Solids, 29, 746–760.
  • Skarżyński, Ł., & Tejchman, J. (2013). Experimental investigations of fracture process in plain and reinforced concrete beams under bending. Strain, 49(6), 521–543.
  • Smakosz, Ł., & Tejchman, J. (2014). Evaluation of strength, deformability and failure mode of composite structural insulated panels. Materials and Design, 54C, 1068–1082.10.1016/j.matdes.2013.09.032
  • Tejchman, J., & Bobiński, J. (2012). In W. Wu, & R. I. Borja (Eds.), Continuous and discontinuous modelling of fracture in concrete using FEM. Berlin-Heidelberg: Springer.
  • Xenos, D., & Grassl, P. (2016). Modelling the failure of reinforced concrete with non local and crack band approaches using the damage-plasticity model CDPM2. Finite Elements in Analysis and Design, 117–118, 11–20.10.1016/j.finel.2016.04.002
  • Xotta, G., Beizaee, S., & Willam, K. J. (2016). Bifurcation investigations of coupled damage-plasticity models for concrete materials. Computer Methods in Applied Mechanics and Engineering, 298, 428–452.10.1016/j.cma.2015.10.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.