371
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Influence of two unparallel fissures on the mechanical behaviours of rock-like specimens subjected to uniaxial compression

, , , &
Pages 1643-1663 | Received 16 Oct 2017, Accepted 23 May 2018, Published online: 31 May 2018

References

  • Abe, S., Place, D., & Mora, P. (2004). A parallel implementation of the lattice solid model for the simulation of rock mechanics and earthquake dynamics. Pure and Applied Geophysics, 161, 2265–2277.
  • Alam, S. Y., Loukili, A., & Grondin, F. (2012). Monitoring size effect on crack opening in concrete by digital image correlation. European Journal of Environmental and Civil Engineering, 16, 818–836.10.1080/19648189.2012.672211
  • Bidgoli, M. N., Zhao, Z., & Jing, L. (2013). Numerical evaluation of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 5, 419–430.10.1016/j.jrmge.2013.09.002
  • Brideau, M. A., Yan, M., & Stead, D. (2009). The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology, 103, 30–49.10.1016/j.geomorph.2008.04.010
  • Cao, R. H., Cao, P., Lin, H., Pu, C. Z., & Ou, K. (2016). Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: Experimental studies and particle mechanics approach. Rock Mechanics and Rock Engineering, 49, 763–783.10.1007/s00603-015-0779-x
  • Cheng, H., Zhou, X., Zhu, J., & Qian, Q. H. (2016). The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression. Rock Mechanics and Rock Engineering, 49, 3481–3494.10.1007/s00603-016-0998-9
  • Cundall, P. A. (1971). A computer model for simulating progressive large scale movements in blocky rock systems. In Proceedings of the symposium of the international society of rock mechanics, Nancy.
  • Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29, 47–65.10.1680/geot.1979.29.1.47
  • Einstein, H. H., & Hirschfeld, R. C. (1973). Model studies on mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division, 99, 229–248.
  • Einstein, H. H., Nelson, R. A., Bruhn, R. W., & Hirschfeld, R. C. (1969). Model studies of jointed rock behavior. In Proceedings of 11th symposium on rock mechanics (pp. 83–103). Berkeley.
  • Feng, P., Dai, F., Liu, Y., Xu, N. W., & Fan, P. X. (2017). Effects of coupled static and dynamic strain rates on the mechanical behaviors of rock-like specimens containing preexisting fissures under uniaxial compression. Canadian Geotechnical Journal. doi:10.1139/cgj-2017-0286
  • Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 221, 163–198.10.1098/rsta.1921.0006
  • Halakatevakis, N., & Sofianos, A. I. (2010). Strength of a blocky rock mass based on an extended plane of weakness theory. International Journal of Rock Mechanics and Mining Sciences, 47, 568–582.10.1016/j.ijrmms.2010.01.008
  • Hazzard, J. F., & Young, R. P. (2000). Simulating acoustic emissions in bonded-particle models of rock. International Journal of Rock Mechanics and Mining Sciences, 37, 867–872.10.1016/S1365-1609(00)00017-4
  • Kumar, D., & Das, S. K. (2005). An experimental study of the parameters influencing ultimate bearing strength of weak floor strata using physical modeling. Geotechnical and Geological Engineering, 23, 1–15.10.1007/s10706-003-3158-4
  • Lee, H., & Jeon, S. (2011). An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures, 48, 979–999.10.1016/j.ijsolstr.2010.12.001
  • Li, Y. P., Chen, L. Z., & Wang, Y. H. (2005). Experimental research on pre-cracked marble under compression. International Journal of Solids and Structures, 42, 2505–2516.10.1016/j.ijsolstr.2004.09.033
  • Liu, Y., Dai, F., Dong, L., Xu, N., & Feng, P. (2018). Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters. Rock Mechanics and Rock Engineering, 51, 47–68.10.1007/s00603-017-1327-7
  • Liu, Y., Dai, F., Xu, N., Zhao, T., & Feng, P. (2018). Experimental and numerical investigation on the tensile fatigue properties of rocks using the cyclic flattened Brazilian disc method. Soil Dynamics and Earthquake Engineering, 105, 68–82.10.1016/j.soildyn.2017.11.025
  • Liu, Y., Dai, F., Zhao, T., & Xu, N. W. (2017). Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression. Rock Mechanics and Rock Engineering, 50, 89–112.10.1007/s00603-016-1085-y
  • Lu, X. P., & Wu, W. L. (2006). A subregion DRBEM formulation for the dynamic analysis of two-dimensional cracks. Mathematical and Computer Modelling, 43, 76–88.10.1016/j.mcm.2005.03.009
  • Meng, Q., Zhang, M., Han, L., Pu, H., & Nie, T. (2016). Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression. Rock Mechanics and Rock Engineering, 49, 3873–3886.10.1007/s00603-016-1077-y
  • Park, C. H., & Bobet, A. (2009). Crack coalescence in specimens with open and closed flaws: A comparison. International Journal of Rock Mechanics and Mining Sciences, 46, 819–829.10.1016/j.ijrmms.2009.02.006
  • Park, C. H., & Bobet, A. (2010). Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Engineering Fracture Mechanics, 77, 2727–2748.10.1016/j.engfracmech.2010.06.027
  • Peng, R. D., Ju, Y., Wang, J. G., Xie, H. P., Gao, F., & Mao, L. T. (2015). Energy dissipation and release during coal failure under conventional triaxial compression. Rock Mechanics and Rock Engineering, 48, 509–526.10.1007/s00603-014-0602-0
  • Potyondy, D. O. (2007). Simulating stress corrosion with a bonded particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 44, 677–691.10.1016/j.ijrmms.2006.10.002
  • Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41, 1329–1364.10.1016/j.ijrmms.2004.09.011
  • Sagong, M., & Bobet, A. (2002). Coalescence of multiple flaws in a rock-model material in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 39, 229–241.10.1016/S1365-1609(02)00027-8
  • Shen, B., Stephansson, O., Einstein, H. H., & Ghahreman, B. (1995). Coalescence of fractures under shear stresses in experiments. Journal of Geophysical Research: Solid Earth, 100, 5975–5990.10.1029/95JB00040
  • Tang, C. A., Lin, P., Wong, R. H. C., & Chau, K. T. (2001). Analysis of crack coalescence in rock-like materials containing three flaws—Part II: Numerical approach. International Journal of Rock Mechanics and Mining Sciences, 38, 925–939.10.1016/S1365-1609(01)00065-X
  • Wang, B., Yao, C., Yang, J., & Jiang, S. (2017). Numerical simulation of macro-meso mechanical behaviours of sandstone containing a single open fissure under uniaxial compression. European Journal of Environmental and Civil Engineering. doi:10.1080/19648189.2017.1381647
  • Wei, M. D., Dai, F., Xu, N. W., & Zhao, T. (2016). Stress intensity factors and fracture process zones of ISRM-suggested chevron notched specimens for mode I fracture toughness testing of rocks. Engineering Fracture Mechanics, 168, 174–189.10.1016/j.engfracmech.2016.10.004
  • Wong, L. N. Y., & Einstein, H. H. (2009a). Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 46, 239–249.10.1016/j.ijrmms.2008.03.006
  • Wong, L. N. Y., & Einstein, H. H. (2009b). Crack coalescence in molded gypsum and carrara marble: Part 2—Microscopic Observations and Interpretation. Rock Mechanics and Rock Engineering, 42, 513–545.10.1007/s00603-008-0003-3
  • Wong, R. H. C., & Chau, K. T. (1998). Crack coalescence in a rock-like material containing two cracks. International Journal of Rock Mechanics and Mining Sciences, 35, 147–164.10.1016/S0148-9062(97)00303-3
  • Xu, Y., Dai, F., Xu, N. W., & Zhao, T. (2016). Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split hopkinson pressure bar testing. Rock Mechanics and Rock Engineering, 49, 731–745.10.1007/s00603-015-0787-x
  • Yang, S. Q., & Huang, Y. H. (2017). Failure behaviour of rock-like materials containing two pre-existing unparallel flaws: An insight from particle flow modeling. European Journal of Environmental and Civil Engineering. doi:10.1080/19648189.2017.1366954
  • Yang, S. Q., Liu, X. R., & Jing, H. W. (2013). Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 63, 82–92.10.1016/j.ijrmms.2013.06.008
  • Yin, P., Wong, R., & Chau, K. (2014). Coalescence of two parallel pre-existing surface cracks in granite. International Journal of Rock Mechanics and Mining Sciences, 68, 66–84.10.1016/j.ijrmms.2014.02.011
  • Yu, Q. L., Yang, S. Q., Ranjith, P. G., Zhu, W. C., & Yang, T. H. (2016). Numerical modeling of jointed rock under compressive loading using X-ray computerized tomography. Rock Mechanics and Rock Engineering, 49, 877–891.10.1007/s00603-015-0800-4
  • Zhang, X. P., & Wong, L. N. Y. (2013). Crack initiation, propagation and coalescence in rock-like material containing two flaws: A Numerical study based on bonded-particle model approach. Rock Mechanics and Rock Engineering, 46, 1001–1021.10.1007/s00603-012-0323-1
  • Zhao, G. F., Fang, J. N., & Zhao, J. (2011). A 3D distinct lattice spring model for elasticity and dynamic failure. International Journal for Numerical & Analytical Methods in Geomechanics, 35, 859–885.10.1002/nag.v35.8
  • Zhao, T., Dai, F., Xu, N. W., Liu, Y., & Xu, Y. (2015). A composite particle model for non-spherical particles in DEM simulations. Granular Matter, 17, 763–774.10.1007/s10035-015-0596-7
  • Zhao, Z., Jing, L., & Neretnieks, I. (2012). Particle mechanics model for the effects of shear on solute retardation coefficient in rock fractures. International Journal of Rock Mechanics and Mining Sciences, 52, 92–102.10.1016/j.ijrmms.2012.03.001
  • Zhao, Z. H., & Zhou, D. (2016). Mechanical properties and failure modes of rock samples with grout-infilled flaws: A particle mechanics modeling. Journal of Natural Gas Science and Engineering, 34, 702–715.10.1016/j.jngse.2016.07.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.