226
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Applicability of the classical fracture mechanics criteria to predict the crack propagation path in rock under compression

, &
Pages 1761-1784 | Received 10 Feb 2018, Accepted 01 Jun 2018, Published online: 22 Jun 2018

References

  • Aliabadi, M. H., & Rooke, D. P. (1991). Numerical fracture mechanics (Vol. 8). Southampton: Springer Science & Business Media.
  • Aliha, M., Ayatollahi, M., Smith, D., & Pavier, M. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77(11), 2200–2212.10.1016/j.engfracmech.2010.03.009
  • Al-Shayea, N. A. (2005). Crack propagation trajectories for rocks under mixed mode I-II fracture. Engineering Geology, 81(1), 84–97.10.1016/j.enggeo.2005.07.013
  • Al-Shayea, N., Khan, K., & Abduljauwad, S. (2000). Effects of confining pressure and temperature on mixed-mode (I–II) fracture toughness of a limestone rock. International Journal of Rock Mechanics and Mining Sciences, 37(4), 629–643.10.1016/S1365-1609(00)00003-4
  • Arimitsu, Y., Sogabe, Y., & Wu, Z. (2013). A study of fracture from the viewpoint of dilatation. Paper presented at the ICF10, Honolulu (USA) 2001.
  • Ayatollahi, M., & Aliha, M. (2007a). Fracture toughness study for a brittle rock subjected to mixed mode I/II loading. International Journal of Rock Mechanics and Mining Sciences, 44(4), 617–624.10.1016/j.ijrmms.2006.10.001
  • Ayatollahi, M., & Aliha, M. (2007b). Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Computational Materials Science, 38(4), 660–670.10.1016/j.commatsci.2006.04.008
  • Ayatollahi, M., & Aliha, M. (2008). On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials. Engineering Fracture Mechanics, 75(16), 4631–4641.10.1016/j.engfracmech.2008.06.018
  • Ayatollahi, M., Aliha, M., & Hassani, M. (2006). Mixed mode brittle fracture in PMMA – An experimental study using SCB specimens. Materials Science and Engineering, 417(1–2), 348–356.10.1016/j.msea.2005.11.002
  • Ayatollahi, M., Moghaddam, M. R., & Berto, F. (2015). A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials. Theoretical and Applied Fracture Mechanics, 79, 70–76.10.1016/j.tafmec.2015.09.004
  • Backers, T., Stephansson, O., & Rybacki, E. (2002). Rock fracture toughness testing in Mode II—punch-through shear test. International Journal of Rock Mechanics and Mining Sciences, 39(6), 755–769.10.1016/S1365-1609(02)00066-7
  • Behnia, M., Goshtasbi, K., Fatehi Marji, M., & Golshani, A. (2012). On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method. Journal of Mining and Environment, 2(1), 1–16.
  • Behnia, M., Goshtasbi, K., Marji, M. F., & Golshani, A. (2014). Numerical simulation of crack propagation in layered formations. Arabian Journal of Geosciences, 7(7), 2729–2737.10.1007/s12517-013-0885-6
  • Behnia, M., Goshtasbi, K., Marji, M. F., & Golshani, A. (2015). Numerical simulation of interaction between hydraulic and natural fractures in discontinuous media. Acta Geotechnica, 10(4), 533–546.10.1007/s11440-014-0332-1
  • Behnia, M., Goshtasbi, K., Zhang, G., & Mirzeinaly Yazdi, S. H. (2015). Numerical modeling of hydraulic fracture propagation and reorientation. European Journal of Environmental and Civil Engineering, 19(2), 152–167.10.1080/19648189.2014.939306
  • Berto, F., Ayatollahi, M., Borsato, T., & Ferro, P. (2016). Local strain energy density to predict size-dependent brittle fracture of cracked specimens under mixed mode loading. Theoretical and Applied Fracture Mechanics, 86, 217–224.10.1016/j.tafmec.2016.07.004
  • Boulenouar, A., Benseddiq, N., Merzoug, M., Benamara, N., & Mazari, M. (2016). A strain energy density theory for mixed mode crack propagation in rubber-like materials. Journal of Theoretical and Applied Mechanics54, 1417–1431.
  • Cao, P., Liu, T., Pu, C., & Lin, H. (2015). Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Engineering Geology, 187, 113–121.10.1016/j.enggeo.2014.12.010
  • Castelli, M., & Scavia, C. (2004). Fracture mechanics approach to the study of failure in rock. Revue Française de Génie Civil, 8(5–6), 653–682.10.1080/12795119.2004.9692624
  • Chang, S.-H., Lee, C.-I., & Jeon, S. (2002). Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Engineering Geology, 66(1), 79–97.10.1016/S0013-7952(02)00033-9
  • Chiang, W. T. (2013). Fracture criteria for combined mode cracks. Paper presented at the ICF4, Waterloo (Canada) 1977.
  • Crouch, S. L., Starfield, A. M., & Rizzo, F. (1983). Boundary element methods in solid mechanics. Journal of Applied Mechanics, 50, 704–705.
  • Cruse, T. A. (2012). Boundary element analysis in computational fracture mechanics (Vol. 1). Dordrecht: Springer Science & Business Media.
  • da Silva, B. G., & Einstein, H. H. (2013). Modeling of crack initiation, propagation and coalescence in rocks. International Journal of Fracture, 182(2), 167–186.10.1007/s10704-013-9866-8
  • Erdogan, F., & Sih, G. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85(4), 519–525.10.1115/1.3656897
  • Fajdiga, G., Ren, Z., & Kramar, J. (2007). Comparison of virtual crack extension and strain energy density methods applied to contact surface crack growth. Engineering Fracture Mechanics, 74(17), 2721–2734.10.1016/j.engfracmech.2007.01.016
  • Gercek, H. (2007). Poisson’s ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 44(1), 1–13.
  • Haeri, H., Shahriar, K., Marji, M. F., & Moarefvand, P. (2014). Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. International Journal of Rock Mechanics and Mining Sciences, 67, 20–28.10.1016/j.ijrmms.2014.01.008
  • Haeri, H., Khaloo, A., & Marji, M. F. (2015a). Experimental and numerical analysis of Brazilian discs with multiple parallel cracks. Arabian Journal of Geosciences, 8(8), 5897–5908.10.1007/s12517-014-1598-1
  • Haeri, H., Khaloo, A., & Marji, M. F. (2015b). Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials. Strength of Materials, 47(5), 740–754.10.1007/s11223-015-9711-6
  • Hoek, E., & Bieniawski, Z. (1984). Brittle fracture propagation in rock under compression. International Journal of Fracture, 26(4), 276–294.10.1007/BF00962960
  • Hosseini_Nasab, H., & Fatehi Marji, M. (2007). A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting. Journal of Mechanics of Materials and Structures, 2(3), 439–458.10.2140/jomms
  • Hussain, M., Pu, S., & Underwood, J. (1974). Strain energy release rate for a crack under combined mode I and mode II. Paper presented at the Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II. Maryland (USA).
  • Ingraffea, A. R. (1981). Mixed-mode fracture initiation in Indiana limestone and Westerly granite. Paper presented at the 22nd US Symposium on Rock Mechanics (USRMS). Cambridge, MA.
  • Ingraffea, A. R., Heuz, F. E., Ko, H.-Y., & Gerstle, K. (1977). An analysis of discrete fracture propagation in rock loaded in compression. Paper presented at the The 18th US Symposium on Rock Mechanics (USRMS). Golden, Colorado.
  • Jiang, B., Zhu, W., Sun, H., Wang, Z., & Gao, S. (2016). A numerical simulation method and its application for elastic-brittle of crack propagation of fractured rock under compression shear. Electronic Journal of Geotechnical Engineering, 21, 239–252.
  • Kermanidis, T. B., & Mavrothanasis, F. (1995). Calculation of mode III stress intensity factor by BEM for cracked axisymmetric bodies. Computational Mechanics, 16(2), 124–131.10.1007/BF00365866
  • Kordisch, H., Riedmüller, J., & Sommer, E. (1982). The strain-energy-density criterion- Investigations for its applicability. Symposium on Absorbed Specific Energy and/or Strain Energy Density Criterion, 33–43.
  • Lim, I., Johnston, I., Choi, S., & Boland, J. (1994a). Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 1—mode I. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon.
  • Lim, I., Johnston, I., Choi, S., & Boland, J. (1994b). Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2—mixed-mode. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon.
  • Marji, M. F., Hosseini-Nasab, H., & Kohsary, A. H. (2007). A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis. JP Journal of Solids and Structures, 1(1), 61–91.
  • Mashiri, F., Zhao, X.-L., & Grundy, P. (2000). Crack propagation analysis of welded thin-walled joints using boundary element method. Computational Mechanics, 26(2), 157–165.10.1007/s004660000163
  • Palaniswamy, K. (1972). Crack propagation under general in-plane loading (Doctoral dissertation). California Institute of Technology.
  • Panasyuk, V. V., & Berezbnitskiy, L. T.  (1965). Propagation of an arbitrarily oriented rectilinear crack during extension of a plate (No. NASA-TT-F-402). Washington, DC: National Aeronautics And Space Administration.
  • Raju, I., & Krishnamurthy, T. (1992). A boundary element alternating method for two-dimensional mixed-mode fracture problems. Computational Mechanics, 10(2), 133–150.10.1007/BF00369857
  • Richard, H. (1984). Examination of brittle fracture criteria for overlapping mode I and mode II loading applied to cracks. In Application of fracture mechanics to materials and structures (pp. 309–316). Dordrecht: Springer.10.1007/978-94-009-6146-3
  • Rossmanith, H.-P. (2014). Rock fracture mechanics (Vol. 275). New York, NY: Springer.
  • Sharafisafa, M., & Nazem, M. (2014). Application of the distinct element method and the extended finite element method in modelling cracks and coalescence in brittle materials. Computational Materials Science, 91, 102–121.10.1016/j.commatsci.2014.04.006
  • Shetty, D. K., Rosenfield, A. R., & Duckworth, W. H. (1987). Mixed-mode fracture in biaxial stress state: Application of the diametral-compression (Brazilian disk) test. Engineering Fracture Mechanics, 26(6), 825–840.10.1016/0013-7944(87)90032-4
  • Shou, K., & Crouch, S. (1995). A higher order displacement discontinuity method for analysis of crack problems. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 32, No. 1, pp. 49–55). Pergamon: Elsevier.
  • Sih, G. C. (1974). Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture, 10(3), 305–321.10.1007/BF00035493
  • Sih, G. C. (Ed.). (2013). Methods of analysis and solutions of crack problems (Vol. 1). Leyden: Springer Science & Business Media.
  • Whittaker, B. N., Singh, R. N., & Sun, G. (1992). Rock fracture mechanics principles, design and applications, developments in geotechnical engineering. Amsterdam: Elsevier.
  • Woo, C., & Ling, L. (1984). On angled crack initiation under biaxial loading. The Journal of Strain Analysis for Engineering Design, 19(1), 51–59.10.1243/03093247V191051
  • Zeng, Q., Liu, Z., Wang, T., Gao, Y., & Zhuang, Z. (2017). Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore. Computational Mechanics, 61, 1–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.