182
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical properties changes in oak (Quersus canariensis) and stone pine (Pinus pinea) wood subjected to various convective drying conditions

, , , , &
Pages 2117-2129 | Received 15 Dec 2016, Accepted 09 Jul 2018, Published online: 07 Feb 2019

References

  • Adili, B. (2012). Croissance, fructification et régénération naturelle des peuplements artificiels de Pin pignon (Pinus pinea L.) au nord de la Tunisie (Doctoral dissertation). Retrieved from https://tel.archives-ouvertes.fr/tel-00856265/document.
  • Aléon, D., Chanrion, P., Négrié, G., Perez, J., & Snieg, O. (2001). Séchage du bois: Guide pratique. Paris: CTBA.
  • ASTM Standard D 143-94 (Reapproved 2000) Standard test methods for small clear specimens of timber. Philadelphia, PA: American Society for Testing and Materials.
  • Baar, J., Tippner, J., & Rademacher, P. (2015). Prediction of mechanical properties – Modulus of rupture and modulus of elasticity – of five tropical species by nondestructive methods. Maderas Ciencia y Tecnología, 17, 239–252.
  • Bal, B. C. (2014). Some physical and mechanical properties of thermally modified juvenile and mature black pine wood. European Journal of Wood and Wood Products, 72, 61–66.
  • Basilco, C., & Martin, M. (1984). Approche expérimentale des mécanismes de transfert au cours du séchage convectif à haute température d’un bois résineux. International Journal of Heat and Mass Transfer, 27, 657–668.
  • Bekhta, P., & Niemz, P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung, 57, 539–546.
  • Belgacem, N., & Pizzi, A. (2016). Lignocellulosic fibers and wood handbook: Renewable materials for today’s environment. New York: Wiley-Scrivener.
  • Boonstra, M. J., Van Acker, J., Tjeerdsma, B. F., & Kegel, E. V. (2007). Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science, 64, 679–690.
  • Borrega, M., & Kärenlampi, P. P. (2008). Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood. Journal of Wood Science, 54, 323–328.
  • Borrega, M., & Kärenlampi, P. P. (2010). Three mechanisms affecting the mechanical properties of spruce wood dried at high temperature. Journal of Wood Science, 56, 87–94.
  • Campean, M., Marinescu, I., & Ispas, M. (2007). Influence of drying temperature upon some mechanical properties of beech wood. Holz RohWerkst, 65, 443–448.
  • Candana, Z., Korkut, S., & Unsal, O. (2013). Effect of thermal modification by hot pressing on performance properties of paulownia wood boards. Industrial Crops and Products, 45, 461–464.
  • Danvid, J., & Ekevad, M. (2006). Local water vapor diffusion coefficient when drying Norway spruce sapwood. Journal of Wood Science, 52, 195–201.
  • De LaCruz Sanchez, C. M. (2012). Utilisation de conduites de séchage oscillantes pour réduire les contraintes liées au retrait du bois (Doctoral dissertation). Retrieved from https://tel.archives-ouvertes.fr/file/index/docid/839297/filename/These_DE-LA-CRUZ-SANCHEZ_2012.pdf.
  • Ding, W. D., Koubaa, A., & Chaala, A. (2013). Mechanical properties of MMA- hardened poplar wood. Industrial Crops and Products, 46, 304–310.
  • Edvardsen, K., & Sandland, K. M. (1999). Increased drying temperature: Its influence on the dimensional stability of wood. Holz RohWerkst, 57, 207–209.
  • Fengel, D. (1966). On the changes of the wood and its components within the temperature range up to 200 °C – Part I. Holz als Roh- und Werkstoff, 24, 9–14.
  • Fournely, E., Fuentes, S., & Taazount, M. (2011) Mechanical behavior of timber-concrete slabs under real environmental conditions by experimental and numerical approaches. European Journal of Environmental and Civil Engineering, 15, 773–786.
  • Ghazil, S. (2010). Etude de la migration des fluides dans le bois (Doctoral dissertation). University of Henri Poincaré, Nancy-1, France.
  • Guller, B. (2007). The effects of thinning treatments on density, MOE, MOR and maximum crushing strength of Pinus brutia Ten. wood. Annals of Forest Science, 64, 467–475.
  • Hedmark, A., & Scholz, M. (2008). Review of environmental effects and treatment of runoff from storage and handling of wood. Bioresource Technology, 99, 5997–6009.
  • Kannan, S. (2008). Drying kinetics of saw dust in tray dryer C. Journal of Sustainable Development, 1, 123–127.
  • Kesik, H. I., Korkut, S., Hiziroglu, S., & Sevik, H. (2014). An evaluation of properties of four heat treated wood species. Industrial Crops and Products, 60, 60–65.
  • Kocaefe, D., Poncsak, S., Tang, J., & Bouazara, M. (2010). Effect of heat treatment on the mechanical properties of North American Jack pine: Thermogravimetric study. Journal of Material Science, 45, 681–687.
  • Kowalski, S. J., Rajewska, K., & Rybicki, A. (2005). Stresses generated during convective and microwave drying. Drying Technology, 23, 1875–1893.
  • Kumar, P., Barrett, D. M., Delwich, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729.
  • Leiker, M., & Adamska, M. A. (2004). Energy efficiency and drying rates during vacuum microwave drying of wood. Holz Roh Werkstoff, 62, 203–208.
  • Li, X. J., Zhang, B. G., & Li, W. J. (2008). Microwave-vacuum drying of wood: Model formulation and verification. Drying Technology, 26, 1382–1387.
  • Manfoumbi, N., Sauvat, N., & Dubois, F. (2012). Découplage expérimental des déformations d’éléments bois sous chargements hydrique et mécanique variables. European Journal of Environmental and Civil Engineering, 16, 1168–1186.
  • Marinescu, I. (2003). Study concerning the technology, parameters and characteristics of beech wood within the drying process (Doctoral dissertation). Transilvania: University of Brasov.
  • Moyne, C., & Martin, M. (1982). Etude expérimentale du transfert simultané de chaleur et de masse au cours du séchage par contact sous-vide d’un bois résineux. International Journal of Heat and Mass Transfer, 25, 1839–1848.
  • Ouertani, S., Azzouz, S., Hassini, L., & Belghith, A. (2011). Palm wood drying and optimization of the processing parameters. Wood Material Science & Engineering, 6, 75–90.
  • Ouertani, S., Azzouz, S., Hassini, L., Koubaa, A., & Belghith, A. (2014). Moisture sorption isotherms and thermodynamic properties of Jack pine and Palm wood: Comparative study. Industrial Crops and Products, 56, 200–210.
  • Ouertani, S., Hassini, L., Azzouz, S., Torres, S. S., Belghith, A., & Koubaa, A. (2015b ). Modeling of combined microwave and convective drying of wood: Prediction of mechanical behavior via internal gas pressure. Drying Technology, 33, 1234–1242.
  • Ouertani, S., Koubaa, A., Azzouz, S., Hassini, L., Ben Dhib, K., & Belghith, A. (2015a). Vacuum contact drying kinetics of Jack pine wood and its influence on mechanical properties: Industrial applications. Heat and Mass Transfer, 51, 1029–1039.
  • Palipane, K. B., & Driscoll, R. H. (1994). The thin layer drying characteristics of macadamia in-shell nuts and kernels. Journal of Food Engineering, 23, 129–144.
  • Perré, P., & Keey, B. R. (2006). Drying of wood: Principles and practices. In A. S. Mujumdar (Ed.), Handbook of industrial drying (pp. 822–872). London: Taylor & Francis Group LLC.
  • Perré, P., & Turner, I. W. (1999). A 3D version of TransPore: A comprehensive heat and mass transfer computational model for simulating the drying of porous media. International Journal of Heat and Mass Transfer, 42, 4501–4521.
  • Quézel, P., & Bonin, G. (1980). Les forêts feuillues du pourtour méditerranéen: Constitution, écologie, situation actuelle et perspectives. Revue Forestière Française, 32, 253–268.
  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/.
  • Rémond, R. (2004). Approche déterministe du séchage des avivés de résineux de fortes épaisseurs pour proposer des conduites industrielles adaptées (Doctoral dissertation). Retrieved from: https://tel.archives-ouvertes.fr/pastel-00001132/document.
  • Rémond, R., Passard, J., & Perré, P. (2007). The effect of temperature and moisture content on the mechanical behaviour of wood: A comprehensive model applied to drying and bending. European Journal of Mechanics A/Solids, 26, 558–572.
  • Santos, J. A. (2000). Mechanical behaviour of eucalyptus wood modified by heat. Wood Science Technology, 34, 39–43.
  • Song, Z., Jing, C., Yao, L., Zhao, X., Wang, W., Mao, Y., & Ma, C. (2016). Microwave drying performance of single-particle coal slime and energy consumption analyses. Fuel Processing Technology, 143, 69–78.
  • Terziev, N., & Daniel, G. (2002). Industrial Kiln drying and its effect on microstructure, impregnation and properties of scots pine timber impregnated for above ground use. Holzforschung, 56, 434–439.
  • Vongpradubchai, S., & Rattanadecho, P. (2009). The microwave processing of wood using a continuous microwave belt drier. Chemical Engineering and Processing: Process Intensification, 48, 997–1003.
  • Yemele, M. C. N., Koubaa, A., Cloutier, A., Soulounganga, P., Stevanovic, T., & Wolcott, M. T. (2013). Effects of hot water treatment of raw bark, coupling agent, and lubricants on properties of bark/HDPE composites. Industrial Crops and Products, 42, 50–56.
  • Zhao, J., Fu, Z., Jia, X., & Cai, Y. (2016). Modeling conventional drying of wood: Inclusion of a moving evaporation interface. Drying Technology, 34, 530–538.
  • Zhiyong, C., & Ross, R. J. (2010). Mechanical properties of wood-based composite materials. In R. J. Ross (Ed.), Wood handbook, wood as an engineering material (pp. 12-1–12-12). Madison, WI: Forest Products Laboratory, United States Department of Agriculture.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.