300
Views
9
CrossRef citations to date
0
Altmetric
Note

A rational approach for modelling the meteorologically induced pore water pressure in infrastructure slopes

, , &
Pages 2361-2382 | Received 10 Feb 2017, Accepted 27 Jul 2018, Published online: 21 Jan 2019

References

  • Blight, G. E. (2003). The vadose zone soil-water balance and transpiration rates of vegetation. Geotechnique, 53(1), 55–64.
  • Bolton, M. D., & Take, W. A. (2011). Seasonal ratcheting and softening in clay slopes, leading to first-time failure. Géotechnique, 61(9), 757–769. doi:10.1680/geot.9.P.125
  • Briggs, K. M, Smethurst, J. A., Powrie, W., & O’Brien, A. S. (2012). Wet winter pore pressures in railway embankments. Proceedings of the Institution of Civil Engineers, 166, 451–465.
  • Briggs, K. M., Smethurst, J. A., Powrie, W., O’Brien, A. S., & Butcher, D. J. E. (2013). Managing the extent of tree removal from railway earthwork slopes. Ecological Engineering, 61, 690–696. doi:10.1016/j.ecoleng.2012.12.076,
  • BSI. (1990). Methods of test for soils for civil engineering purposes. Classification tests BS 1377-2:1990. London: Author.
  • Clarke, D., & Smethurst, J. A. (2010). Effects of climate change on cycles of wetting and drying in engineered clay slopes in England. Quarterly Journal of Engineering Geology and Hydrogeology, 43(4), 473–486. doi:10.1144/1470-9236/08-106
  • Croney, D. (1977). The design and performance of road pavements. London: Her Magistye’s Stationery Office; Transport and Road Research Laboratory.
  • Davies, O., Rouainiaa, M., Glendinninga, S., Cashb, M., & Trentob, V. (2014). Investigation of a pore pressure driven slope failure using a coupled hydro-mechanical model F the slip. Engineering Geology, 178, 70–81. doi:10.1016/j.enggeo.2014.05.012
  • Ewen, J. (2001). SHETRAN physically-based spatially-distributed river catchment modelling system user manual. Newcastle Upon Tyne, UK: Water Resources Systems Research Laboratory.
  • Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(3), 521–532.
  • Fredlund, M. D., Wilson, G. W., & Fredlund, D. G. (2002). Use of Grain-Size distribution for estimation of the soil water characteristic curve. Canadian Geotechnical Journal, 39, 1103–1117.
  • Geo-Slope. (2013a). Vadose zone modeling with VADOSE/W: An engineering methodology. Alberta, Canada: Author.
  • Geo-Slope. (2013b). Seepage modeling with SEEP/W: An engineering methodology. Alberta, Canada: Author.
  • Gitirana, G. F. N., & Fredlund, D. G. (2004). Soil-water characteristic curve with independent properties. Journal of Geotechnical and Geoenvironmental Engineering, 130(2), 209–212.
  • Green, R. E., & Corey, J. C. (1971). Calculation of hydraulic conductivity: A further evaluation of some predictive methods. Soil Science Society of America Journal, 35, 3–8.
  • Gupta, S. C., & Larson, W. E. (1979). Estimation of soil water retention characteristics from particle size, distribution, organic matter, percent, and bulk density. Water Resources Research Journal, 15(6), 1633–1635.
  • Head, K. H. (1986). Manual of soil laboratory testing. London: Pentech Press.
  • Itasca Consulting Group, Inc. 2005. Fast Lagrangian analysis of continua in 3 dimensions user’s guide (3rd ed.). Minneapolis, MN: Author.
  • Jones, P., Harpham, C., Kilsby, C., Glenis, V., & Burton, A. (2010). UK climate projections science report : Projections of future daily climate for the UK from the weather generator. Devon, UK: UK Climate Projections.
  • Karim, M. R., & Lo, S.-C. R. (2015). Estimation of the hydraulic conductivity of soils improved with vertical drains. Computers and Geotechnics, 63, 299–305. doi:10.1016/j.compgeo.2014.10.010.
  • Karthikeyan, M, Toll, D. G., & Phoon, K. K. (2008). Prediction of changes in pore-water pressure response due to rainfall events. In D. G. Toll (Ed.), Unsaturated soils: Advances in Geo-Engineering (pp. 829–834). London: Taylor & Francis Group.
  • Loveridge, F. A., Spink, T. W., O’Brien, A. S., Briggs, K. M., & Butcher, D. (2010). The impact of climate and climate change on UK infrastructure slopes. Quarterly Journal of Engineering Geology and Hydrogeology, 43, 461–472.
  • McLernon, M. (2014). Climate driven pore water pressure dynamics and slope stability within glacial till drumlins in Northern Ireland. Belfast, UK: Queen’s University.
  • Murphy, J. M., Sexton, D. M. H., Jenkins, G. J., Boorman, P. M., Booth, B.B.B., Brown, C.C., … Wood, R. A. (2009). UK climate projections science report: Climate change projections. Exeter: Met Office Hadley Centre, Exeter. Retrieved from http://ukclimateprojections.metoffice.gov.uk/media.jsp?mediaid=87851&filetype=pdf
  • Potts, D. M., Kovacevic, N., & Vaughan, P. R. (1997). Delayed collapse of cut slopes in stiff clay. Geotechnique, 47(5), 953–982.
  • Ridley, A., McGinnity, B., & Vaughan, P. (2004). Role of pore water pressures in embankment stability. Proceedings of the Institution of Civil Engineers, 157(GE4), 193–198.
  • Rouainia, M, Davies, O., & O’Brien, T. (2009). Numerical modelling of climate effects on slope stability. Proceedings of the Institution of Civil Engineers Engineering Sustainability, 162(ES2), 81–89. doi:10.1680/ensu.2009.162.
  • Saxton, K. A., & Rawls, W. J. (2006). Soil water characteristic estimation by texture and organic matter for hydrologic solutions. Soil science society of America Journal, 70, 1569–1578.
  • Sivakumar, V., Hughes, D., Clarke, G., & Glynn, D. (2007). A case study: delayed failure of a deep cutting in lodgement till. Proceedings of the ICE - Geotechnical Engineering, 160(4), 193–202. doi:10.1680/geng.2007.160.4.193
  • Smethurst, J., Briggs, K. M., Powrie, W., Ridley, A., & Butcher, D. J. E. (2014). Mechanical and hydrological impacts of tree removal on a clay fill railway embankment. Geotechnique, 65, 869–882.
  • Smethurst, J. A., Clarke, D., & Powrie, W. (2012). Factors controlling the seasonal variation in soil water content and pore water pressures within a lightly vegetated clay slope. Géotechnique, 62(5), 429–446. doi:10.1680/geot.10.P.097
  • Smethurst, J. A., Powrie, W., & Clarke, D. (2006). Seasonal changes in pore water pressure in a grass-covered cut slope in London Clay. Géotechnique, 56(8), 523–537. doi:10.1680/geot.2006.56.8.523,
  • Toll, D. G., Rahim, M. S., Karthikeyan, M., & Tsaparas, I. (2014). Soil atmosphere interactions for analysing slopes in tropical soils. In The 14th International conference of the International Association of Computer Methods and Advances in Geomechanics (pp. 1333–1338). London: Taylor & Francis.
  • Tsaparas, I., & Toll, D. G. (2002). Numerical analysis of infiltration into unsaturated residual soil slopes. In Proceedings of 3rd international conference on unsaturated soils (Vol. 2, pp. 755–761). Recife: Brazil.
  • Turner, S. (2001). Climate change blamed as landslip incidents treble. Retrieved from https://www.newcivilengineer.com/climate-change-blamed-as-landslip-incidens-treble/812153.article
  • UK Grid Reference Finder. (2014). UK grid reference finder. Retrieved from http://www.gridreferencefinder.com/#
  • Van-Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.
  • Witczak, M. W., Zapata, C. E., & Houston, W. N. (2006). Models incorporated into the Current Enhanced Integrated Climatic Model: NCHRP 9-23, Project findings and additional changes after version 0.7. Tempe, Arizona: NCHRP.
  • Zapata, C. E. (1999). Uncertainty in soil water characteristics curve and impacts on unsaturated shear strength predictions. Tempe, AZ: Arizona State University.
  • Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W., & Kelly, T. (2013). Step by step calculation of the Penman-Monteith evapotranspiration (FAO-56 Method). University of Florida, IFAS Extension. Retrieved from http://edis.ifas.ufl.edu/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.