112
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Semi-analytical solution of nonlinear dynamic behaviour for fully saturated porous media

, , , &
Pages 264-280 | Received 04 Apr 2018, Accepted 15 Sep 2018, Published online: 11 Feb 2019

References

  • Arulanandan, K., & Scott, R. F. (Eds.). (1993). Verification of numerical procedures for the analysis of soil liquefaction problems. Rotterdam: A.A. Balkema.
  • Askari, H., Saadatnia, Z., Younesian, D., Yildirim, A., & Kalami-Yazdi, M. (2011). Approximate periodic solutions for the Helmholtz–Duffing equation. Computers & Mathematics with Applications, 62(10), 3894–3901. doi:10.1016/j.camwa.2011.09.042
  • Asadi, R., & Ataie-Ashtiani, B. (2015). A comparison of finite volume formulations and coupling strategies for two-phase flow in deforming porous media. Computers and Geotechnics, 67, 17–32. doi:10.1016/j.compgeo.2015.02.004
  • Assadi, R., & Ataie-Ashtiani, B. (2016). Numerical modeling of subsidence in saturated porous media: A mass conservative method. Journal of Hydrology, 542, 423–436. doi:10.1016/j.jhydrol. 2016.09.024
  • Asadi, R., Ataie-Ashtiani, B., & Simmons, C. T. (2014). Finite volume coupling strategies for the solution of a Biot consolidation model. Computers and Geotechnics, 55, 494–505. doi:10.1016/j.compgeo.2013.09.014
  • Biot, M. A. (1962). Mechanics of deformation and acoustic propagation porous media. Journal of Applied Mechanics, 33(4), 1482–1498. doi:10.1063/1.1728759
  • Chan, A. H. C. (1988). “A unified finite element solution to static and dynamic problem in geomechanics” (Ph. D. Thesis). Department of civil Engineering, University College of Swansea.
  • De Simone, S., & Carreral, J. (2017). Analytical solutions to coupled HM problems to highlight the nonlocal nature of aquifer storage. Water Resources Research, 53, 9580–9599. doi:10.1002/2017WR020824
  • Elgamal, A., Yang, Z., & Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamic and Earthquake Engineering, 22(4), 259–271. doi:10.1016/S0267-7261(02)00022-2
  • Elgamal, A., Yang, Z., Pastor, M., Parra, E., & Ragheb, A. (2003). Modeling of cyclic mobility in saturated cohesionless soil. International Journal of Plasticity, 19(6), 883–905. doi:10.1016/S0749-6419(02)00010-4
  • Elmas, N., & Boyaci, H. (2014). A new perturbation technique in solution of nonlinear differential equations using variable transformation. Applied Mathematics and Computation, 227, 422–427. doi:10.1016/j.amc.2013.11.035
  • Fahs, M., Ataie-Ashtiani, B., Younes, A., Simmons, C. T., & Hckerer, P. (2016). The Henry problem: New semianalytical solution for velocity-dependent dispersion. Water Resources Research, 52(9), 7382–7407. doi:10.1002/2016WR019288
  • Farlow, S. J. (1982). Partial differential equation for scientists and engineers. New York: John Wiley and Sons, Inc.
  • Hayek, M., Younes, A., Zouali, J., Fajraoui, N., & Fahs, M. (2017). Analytical solution and Bayesian inference for interference pumping tests in fractal dual-porosity media. Computational Geosciences, 22, 413–421. doi:10.1007/s10596-017-9701-9
  • Jeremic, B., Cheng, Z., Taiebat, M., & Dafalias, Y. (2008). Numerical simulation of fully saturated porous material. International Journal for Numerical and Analytical Methods in Geomechanics, 32(13), 1635–1660. doi:10.1002/nag.687
  • Mc-Namee, J., & Gibson, R. E. (1960). Displacement functions and linear transforms applied to diffusion through porous elastic media. The Quarterly Journal of Mechanics and Applied Mathematics, 13(1), 98–1110. doi: 10.1093/qjmam/13.1.98
  • Manzari, M. T., & Dafalias, Y. F. (1997). A critical state two-surface plasticity model for sand. Geotechnique, 47(2), 255–272. doi:10.1680/geot.1997.47.2.255
  • Nayfeh, A. H. (1982). Introduction to perturbation techniques. New York: John Wiley and Sons.
  • Nayfeh, A. H., Nayfeh, S. A., & Mook, D. T. (1992). On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dynamics, 3(2), 145–162. doi:10.1007/BF00118990
  • Navas, P., Sanavia, L., Susana, L.-Q., & Rena, C. Y. (2017). u–w formulation for dynamic problems in large deformation regime solved through an implicit meshfree scheme. Computational Mechanics, 62, 745–760. doi:10.1007/s00466-017-1524-y
  • Navas, P., Yu, R. C., López-Querol, S., & Li, B. (2016). Dynamic consolidation problems in saturated soils solved through u–w formulation in a LME meshfree framework. Computers and Geotechnics, 79, 55–72. doi:10.1016/j.compgeo.2016.05.021
  • Prevost, J. H. (1985). Wave propagation in fluid-saturated porous media: An efficient finite element procedure. Soil Dynamics and Earthquake Engineering, 4(4), 183–202.
  • Rohan, E., & Lukes, V. (2015). Modeling nonlinear phenomena in deforming fluid-saturated porous media using homogenization and sensitivity analysis concepts. Applied Mathematics and Computation, 267, 583–595. doi:10.1016/j.amc.2015.01.054
  • Sabetamal, H., Nazem, M., Sloan, S. W., & Carter, J. P. (2016). Frictionless contact formulation for dynamic analysis of nonlinear saturated porous media based on the mortar method. International Journal for Numerical and Analytical Methods in Geomechanics, 40(1), 25–61. doi:10.1002/nag.2386
  • Taiebat, M., Shahir, H., & Pak, A. (2007). Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dynamic and Earthquake Engineering, 27(1), 60–72. doi:10.1016/j.soildyn.2006.03.004
  • Xu, C. H., Song, J., Du, X., & Zhong, Z. (2017). A completely explicit finite element method for solving dynamic u-p equations of fluid-saturated porous media. Soil Dynamic and Earthquake Engineering, 97, 364–376. doi:10.1016/j.soildyn.2017.03.016
  • Zienkiewicz, O. C., & Bettess, P. (1980). Soil and other porous media under transient, dynamic condition. Basic formulation. Scientific Papers of Inst. Geotechnical Eng., Wroclaw Techn. Univ. No, 32, 243–254.
  • Zienkiewicz, O. C., Chan, A. H. C., Pastor, M., Schrefler, B. A., & Shiomi, T. (1999). Computational Geomechanics with Special Reference to Earthquake Engineering. New York: Wiley, ISBN: 0-471-98285-7.
  • Zienkiewicz, O. C., Chang, C. T., & Bettess, P. (1980). Drained, and undrained, consolidating and dynamic behavior assumption in soil. Geotechnique, 30(4), 385–395. doi:10.1680/geot.1980.30.4.385
  • Zienkiewicz, O. C., & Shiomi, T. (1984). Dynamic behavior of saturated porous media; The generalized Biot formulation and its numerical solutions. International Journal for Numerical and Analytical Methods in Geomechanics, 8(1), 71–89. doi:10.1002/nag.1610080106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.