161
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Research on the numerical model for the routing of viscous debris flow considering the interface

, , &
Pages 468-484 | Received 21 Mar 2018, Accepted 28 Sep 2018, Published online: 27 Oct 2018

References

  • Beguería, S. , Van Asch, T. W. J. , Malet, J.-P. , & Gröndahl, S. (2009). A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Natural Hazards and Earth System Science, 9 (6), 1897–1909.
  • Bregoli, F. , Medina, V. , Chevalier, G. , Hürlimann, M. , & Bateman, A. (2014). Debris-flow susceptibility assessment at regional scale: Validation on an alpine environment. Landslides, 12 (3), 437–454.
  • Chen, H. X. , Zhang, L. M. , Gao, L. , Yuan, Q. , Lu, T. , Xiang, B. , & Zhuang, W. L. (2017). Simulation of interactions among multiple debris flows. Landslides, 14 (2), 595–615.
  • Chen, J. C. , & Chuang, M. R. (2014). Discharge of landslide-induced debris flows: case studies of Typhoon Morakot in southern Taiwan. Natural Hazards and Earth System Sciences, 14 (7), 1719–1730.
  • Cui, P. , Ge, Y. , Zhuang, J. , & Wang, D. (2009). Soil evolution features of debris flow waste-shoal land. Journal of Mountain Science, 6 (2), 181–188.
  • Cui, P. , Hu, K. , Zhuang, J. , Yang, Y. , & Zhang, J. (2011). Prediction of debris-flow danger area by combining hydrological and inundation simulation methods. Journal of Mountain Science, 8 (1), 1–9.
  • Dai, Z. , Huang, Y. , Cheng, H. , & Xu, Q. (2017). SPH model for fluid–structure interaction and its application to debris flow impact estimation. Landslides, 14 (3), 917–928.
  • De Haas, T. , Braat, L. , Leuven, J. R. F. W. , Lokhorst, I. R. , & Kleinhans, M. G. (2015). Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments. Journal of Geophysical Research: Earth Surface, 120 (9), 1949–1972.
  • Federico, F. , & Cesali, C. (2015). An energy-based approach to predict debris flow mobility and analyze empirical relationships. Canadian Geotechnical Journal, 52 (12), 2113–2133.
  • Fei, X. J. (2003). Velocity and solid transportation concentration of viscous debris flow. Journal of Hydraulic Engineering, 2 , 15–18.
  • George, D. L. , & Iverson, R. M. (2014). A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 470 (2170), 1–31.
  • Guo, X. , & Wu, W. (2015). Some ideas on constitutive modeling of debris materials : In W. Wu &R. I. Borja (Eds.), Recent advances in modeling landslides and debris flows.(pp. 1–9). Switzerland: Springer International Publishing.
  • Guthrie, R. H. , Friele, P. , Allstadt, K. , Roberts, N. , Evans, S. G. , Delaney, K. B. , … Jakob, M. (2012). The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment. Natural Hazards and Earth System Sciences, 12 (5), 1277–1294.
  • Hu, K. H. , Tian, M. , & Li, Y. (2013). Influence of Flow Width on Mean Velocity of Debris Flows in Wide Open Channel. Journal of Hydraulic Engineering, 139 (1), 65–69.
  • Huang, Y. , Cheng, H. , Dai, Z. , Xu, Q. , Liu, F. , Sawada, K. , … Yashima, A. (2015). SPH-based numerical simulation of catastrophic debris flows after the 2008 Wenchuan earthquake. Bulletin of Engineering Geology and the Environment, 74 (4), 1137–1151.
  • Huggel, C. , Zgraggen-Oswald, S. , Haeberli, W. , Kääb, A. , Polkvoj, A. , Galushkin, I. , & Evans, S. G. (2005). The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Natural Hazards and Earth System Science, 5 (2), 173–187.
  • Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32 (4), 610–623.
  • Hungr, O. , Leroueil, S. , & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11 (2), 167–194.
  • Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35 (3), 245–296.
  • Iverson, R. M. (2015). Scaling and design of landslide and debris-flow experiments. Geomorphology, 244 , 9–20.
  • Iverson, R. M. , Reid, M. E. , & Lahusen, R. G. (2003). Debris-flow mobilization from landslides. Annual Review of Earth and Planetary Sciences, 25 (1), 85–138.
  • Jakob, D. M. , & Hungr, O. (2005). Debris-flow hazards and related phenomena (p. 42). Berlin : Springer Praxis Books.
  • Johnson, A. M. , & Rahn, P. H. (1970). Mobilization of debris flows. Zeitschrift Fur Geomorphologie, 9 , 168–186.
  • Kaitna, R. , Rickenmann, D. , & Schatzmann, M. (2007). Experimental study on rheologic behaviour of debris flow material. Acta Geotechnica, 2 (2), 71–85.
  • Kang, H. , & Kim, Y. (2016). The physical vulnerability of different types of building structure to debris flow events. Natural Hazards, 80 (3), 1475–1493.
  • Kang, Z. C. , Lee, C. F. , & Ma, A. N. (2004). Research on debris flow in China. (pp. 132–134). Al Mamourah, UAE: The Science Publishing Company (in Chinese)
  • Liu, X. L. , Tang, L. , Zhang, S. L. , & Chen, M. (1992). The geomorphological characteristics of debris fans and their model experiments. The Chinese Journal of Geological Hazards and Control, 3 (4), 34–42.
  • Luna, B. Q. , Remaître, A. , van Asch, T. W. J. , Malet, J. P. , & van Westen, C. J. (2012). Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 128 (2), 63–75.
  • Major, J. J. , & Pierson, T. C. (1992). Debris flow rheology: experimental analysis of fine-grained slurries. Water Resources Research, 28 (3), 841–857.
  • Martinez, C. , Miralles, W. F. , & Garcia, M. R. (2008). Verification of a 2D finite element debris flow model using Bingham and cross rheological formulations. Debris Flow, 60 , 61–69.
  • Mei, C. C. , & Yuhi, M. (2001). Slow flow of a Bingham fluid in a shallow channel of finite width. Journal of Fluid Mechanics, 431 , 135–159.
  • Olson, S. M. , & Stark, T. D. (2003). Use of laboratory data to confirm yield and liquefied strength ratio concepts. Canadian Geotechnical Journal, 40 (6), 1164–1184.
  • Ouyang, C. , He, S. , & Tang, C. (2015). Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Engineering Geology, 194 , 62–72.
  • Paik, J. (2015). A high resolution finite volume model for 1D debris flow. Journal of Hydro-Environment Research, 9 (1), 145–155.
  • Pan, H. L. , Huang, J. C. , & Ou, G. Q. (2015). Mechanism of downcutting erosion of debris flow over a movable bed. Journal of Mountain Science, 12 (1), 243–250.
  • Pellegrino, A. M. , Scotto di Santolo, A. , & Schippa, L. (2015). An integrated procedure to evaluate rheological parameters to model debris flows. Engineering Geology, 196 , 88–98.
  • Pitman, E. B. , & Le, L. (2005). A two-fluid model for avalanche and debris flows. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 363 (1832), 1573–1601.
  • Prochaska, A. B. , Santi, P. M. , Higgins, J. D. , & Cannon, S. H. (2008). A study of methods to estimate debris flow velocity. Landslides, 5 (4), 431–444.
  • Rickenmann, D. (1999). Empirical relationships for debris flows. Natural Hazards, 19 (1), 47–77.
  • Rickenmann, D. , Laigle, D. , McArdell, B. W. , & Hübl, J. (2006). Comparison of 2D debris-flow simulation models with field events. Computational Geosciences, 10 (2), 241–264.
  • Sachin, C. , Arvind, N. , & Vinesh, D. (2008). The use of airborne LiDAR data for the analysis of debris flow events in Switzerland. Natural Hazards & Earth System Sciences & Discussions, 8 (5), 1113–1127.
  • Sassa, K. , Fukuoka, H. , & Wang, F. W. (1997). Mechanism and risk assessment of landslide-triggered-debris flows: lesson from the 1996.12.6 Otari debris flow disaster, Nagano, Japan. Proceedings of the International Workshop on Landslide Risk Assessment, 347–356.
  • Schamber, D. R. , & Macarthur, R. C. (1985). One-dimensional model for mud flows. NASA STI/Recon Technical Report N, 86, 1334–1339.
  • Staley, D. M. , Negri, J. A. , Kean, J. W. , Laber, J. L. , Tillery, A. C. , & Youberg, A. M. (2017). Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278 , 149–162.
  • Staley, D. M. , Wasklewicz, T. A. , & Kean, J. W. (2014). Characterizing the primary material sources and dominant erosional processes for post-fire debris-flow initiation in a headwater basin using multi-temporal terrestrial laser scanning data. Geomorphology, 214 (2), 324–338.
  • Tecca, P. R. , & Genevois, R. (2009). Field observations of the June 30, 2001 debris flow at Acquabona (Dolomites, Italy). Landslides, 6 (1), 39–45.
  • Wang, C. , Esaki, T. , Xie, M. , & Qiu, C. (2006). Landslide and debris-flow hazard analysis and prediction using GIS in Minamata–Hougawachi area, Japan. Environmental Geology, 51 (1), 91–102.
  • Wang, G. Q. , Shao, S. D. , & Fei, X. J. (1998). Simulation of debris flow: II – Verification. Journal of Sediment Research, 3 , 14–17.
  • Wei, X. L. , Chen, N. S. , Cheng, Q. G. , He, N. , Deng, M. F. , & Tanoli, J. I. (2014). Long-term activity of earthquake-induced landslides: A case study from Qionghai Lake Basin, Southwest of China. Journal of Mountain Science, 11 (3), 607–624.
  • Yang, H. , Wei, F. , & Hu, K. (2014). Mean velocity estimation of viscous debris flows. Journal of Earth Science, 25 (4), 771–778.
  • Yu, B. (2010). Research on the giant debris flow hazards in Zhouqu County, Gansu Province on August 7, 2010. Journal of Engineering Geology, 18 (4), 437–444.
  • Yu, B. , Ma, Y. , & Wu, Y. (2013). Case study of a giant debris flow in the Wenjia Gully, Sichuan Province, China. Natural Hazards, 65 (1), 835–849.
  • Zeng, C. , Cui, P. , Su, Z. , Lei, Y. , & Chen, R. (2015). Failure modes of reinforced concrete columns of buildings under debris flow impact. Landslides, 12 (3), 561–571.
  • Zhang, J. S. , & Cui, P. (2013). An empirical formula for suspended sediment delivery ratio of main river after confluence of debris flow. Journal of Mountain Science, 10 (2), 326–336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.