129
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of the fabric of undisturbed and pluviated silty sand under load over time

, &
Pages 737-756 | Received 03 Mar 2018, Accepted 22 Oct 2018, Published online: 21 Jan 2019

References

  • Ashford, S. A., Rollins, K. M., & Lane, J. D. (2004). Blast-induced liquefaction for full-scale foundation testing. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 798–806.
  • Astedt, B., Weiner, L., & Holm, G. (1992). Increase in bearing capacity with time for friction piles in silt and sand. Proceeding of Nordic Geotechnical Meeting, 411–416.
  • Baxter, C. D. P., & Mitchell, J. K. (2004). Experimental study on the aging of sands. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1051–1062.
  • Bowman, E. T. (2002). The Ageing and creep of dense granular material (Doctoral dissertation). University of Cambridge, Cambridge, UK. Available from ProQuest Dissertations & Theses A&I (U169772).
  • Bowman, E. T., & Soga, K. (2003). Creep, ageing and microstructural change in dense granular materials. Soils & Foundations, 43(4), 107–117.
  • Bullock, P. J., Schmertmann, J. H., McVay, M. C., & Townsend, F. C. (2005). Side shear setup. II: Results from Florida test piles. Journal of Geotechnical and Geoenvironmental Engineering, 131(3), 301–310.
  • Chatfield, C. (1983). Statistic for technology (3rd ed.). London: Chapman and Hall.
  • Cubrinovski, M. (2013). Liquefaction-induced damage in 2010-2011 Christchurch (New Zealand) earthquakes. Proceeding of 7th International Conference on Case Histories in Geotechnical Engineering, Chicago, IL.
  • Cubrinovski, M., Hughes, M., Bradley, B., McCahon, I., McDonald, Y., Simpson, H., … O’Rourke, T. (2011). Liquefaction impact on pipe networks. Retrieved from University of Canterbury Research Repository website https://ir.canterbury.ac.nz/handle/10092/10178
  • Cubrinovski, M., & Ishihara, K. (2002). Maximum and minimum void ratio characteristic of sands. Soils & Foundations, 42(6), 65–78.
  • Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge: Cambridge University Press.
  • Hoeg, K., Dyvik, R., & Sandbaekken, G. (2000). Strength of undisturbed versus reconstituted silt and silty sand specimens. Journal of Geotechnical and Geoenvironmental Engineering, 126(7), 606–617.
  • Huang, A. B., Tai, Y. Y., Lee, W. F., & Ishihara, K. (2008). Sampling and field characterization of the silty sand in Central and Southern Taiwan. 3rd International Conference on Site Characterization, Taipei.
  • Japanese Geotechnical Society. (2009). JGS 0161: Test method for minimum and maximum densities of sands. JGS, Japan.
  • Jang, D. J. (1997). Quantification of sand structure and its evolution during shear using image analysis (Doctoral dissertation). Georgia Institute of Technology. Retrieved from ProQuest Dissertations & Theses A&I (9735904).
  • Jang, D. J., & Frost, J. D. (1998). Sand structures differences resulting from specimen preparation procedures. ASCE Specialty Conference on Geotechnical Earthquake Engineering and Soil Dynamic, Seattle.
  • Johnson, M. E., Tietjen, G. L., & Beckman, R. J. (1980). A new family of probability distributions with applications to Monte Carlo studies. Journal of the American Statistical Association, 75(370), 276–279.
  • Kang, D. H., Yun, T. S., Lau, Y. M., & Wang, Y. H. (2012). DEM simulation on soil creep and associated evolution of pore characteristics. Computers and Geotechnics, 39, 98–106.
  • Kazuo, T., & Kaneko, S. (2006). Undisturbed sampling method using thick water-soluble polymer solution Tsuchi-to-Kiso. Journal of the Japanese Geotechnical Society, 54(4), 145–114.
  • Kuo, C. Y., Frost, J. D., & Chameau, J.-L. A. (1998). Image analysis determination of stereology based fabric tensors. Géotechnique, 48(4), 515–525.
  • Lade, P. V., Liggio, J., & Yamamuro, J. A. (1998). Effect of non-plastic fines on minimum and maximum on void ratios of sand. Geotechnical Testing Journal, 21, 336–347.
  • Lloyd, G. (1987). Atomic number and chrystallographic contrast images with the SEM: A review of backscattered electron techniques. Mineralogical Magazine, 51, 3–19.
  • Masad, E. (1998). Permeability simulation of reconstructed anisotropic soil medium (Doctoral dissertation). Washington State University. Retrieved from ProQuest Dissertations & Theses A&I (9917441).
  • Masad, E., & Muhunthan, B. (2000). Three dimensional characterization and simulation of anisotropic soil fabric. Journal of Geotechnical and Geoenvironmental Engineering. ASCE, 126(3), 199–207.
  • Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behaviour (3rd ed.). Hoboken, NJ: John Wiley & Sons.
  • Muszynski, M. R. (2000). Void ratio distribution of normally consolidated coarse-grain magnetic tailings as a function of aging time (Unpublished master’s thesis). Michigan Technological University, Houghton, MI.
  • Ng, W. K., Selamat, M. R., & Choong, K. K. (2010). Soil/pile set-up effects on driven pile in Malaysian soil. Electronic Journal of Geotechnical Engineering, 15A, 1–12.
  • Oda, M., & Iwashita, K. (1999). Introduction to mechanics of granular materials. Rotherdam, The Netherland: Balkema.
  • Palmer, S. N., & Barton, M. E. (1986). Avoiding microfabric disruption during the impregnation of friable uncemented sands with dyed epoxy. Sedimentary Research, 56, 556–557.
  • Saftner, D. A. (2009). Sand aging: Time dependent strength gain in recently disturbed sand. Proceedings of the 4th International Young Geotechnical Engineer’s Conference, Alexandria, Egypt.
  • Stringer, M. E., Cubrinovski, M., & Haycock, I. (2016). Experience with gel-push sampling in New Zealand. Proceeding of 5th International Conference on Site Characterization, Gold Coast Australia.
  • Taylor, M. L., Cubrinovski, M., & Haycock, I. (2012). Application of new ‘Gel-push’ sampling procedure to obtain high quality laboratory test data for advanced geotechnical analyses. Proceeding of 12th NZSEE Conference, Christchurch, New Zealand.
  • Vlahinić, I., Andò, E., Viggiani, G., & Andrade, J. (2014). Towards a more accurate characterization of granular media: Extracting quantitative descriptors from tomographic images. Granular Matter, 16(1), 9–21.
  • Yamamuro, J. A., & Wood, F. M. (2004). Effect of depositional method on the undrained behavior and microstructure of sand with silt. Soil Dynamics and Earthquake Engineering, 24(9–10), 751–760.
  • Yamamuro, J. A., Wood, F. M., & Lade, P. V. (2008). Effect of depositional method on the microstructure of silty sand. Canadian Geotechnical Journal, 45(11), 1538–1555.
  • Yang, C. T. (2002). Boundary condition and inherent stratigraphic effects on microstructure evolution on sand specimens (Doctoral dissertation). Georgia Institute of Technology. Retrieved from ProQuest Dissertations & Theses A&I (3046948).
  • Yusa, M. (2015). Aging and creep of silty sand (Doctoral dissertation). Retrieved from https://ir.canterbury.ac.nz/handle/10092/10754
  • Yusa, M., & Bowman, E. T. (2013). Quantification of time-dependent microstructural change of a silty sand under load. Powders and Grains 2013, Sydney.
  • Yusa, M., Bowman, E. T., & Cubrinovski, M. (2017). Observation of microstructure of silty sand obtained from gel push sampler and reconstituted sample. EPJ Web Conference, 140, 12017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.