287
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Effects of axial static stress and confining pressure on the dynamic compressive behaviours of granite

, &
Pages 795-812 | Received 05 Nov 2017, Accepted 04 Nov 2018, Published online: 28 Jan 2019

References

  • ASTM. (2001). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken: ASTM International.
  • Chen, Z. M., Li, Y. X., & Zhang, Z. (2016). Experimental study of dynamic mechanical properties of granite. Applied Mechanics and Materials, 858, 86–90.
  • Dai, F., Huang, S., Xia, K. W., & Tan, Z. Y. (2010). Some fundamental issues in dynamic compression and tension tests of rocks using split hopkinson pressure bar. Rock Mechanics and Rock Engineering, 43(6), 657–666.
  • Du, H. B., Dai, F., Xu, Y., Liu, Y., & Xu, H. N. (2018). Numerical investigation on the dynamic strength and failure behaviour of rocks under hydrostatic confinement in SHPB testing. International Journal of Rock Mechanics and Mining Sciences, 108, 43–57.
  • Fairhurst, C. E., & Hudson, J. A. (1999). Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 36(3), 279–289.
  • Feng, J., Wang, E., Shen, R., Chen, L., Li, X., & Xu, Z. (2016). Investigation on energy dissipation and its mechanism of coal under dynamic loads. Geomechanics and Engineering, 11(5), 657–670.
  • Gong, F. Q., Li, X. B., & Liu, X. L. (2011). Preliminary experimental study of characteristics of rock subjected to 3D coupled static and dynamic loads. Chinese Journal of Rock Mechanics and Engineering, 30(6), 1179–1190.
  • Hashiba, K., & Fukui, K. (2015). Index of loading-rate dependency of rock strength. Rock Mechanics and Rock Engineering, 48(2), 859.
  • Jiang, Q., Zhong, S., Cui, J., Feng, X. T., & Song, L. B. (2016). Statistical characterization of the mechanical parameters of intact rock under triaxial compression: an experimental proof of the Jinping Marble. Rock Mechanics and Rock Engineering, 49(12), 4631–4646.
  • Latham, J. P., Van Meulen, J. A., & Dupray, S. (2006). Prediction of fragmentation and yield curves with reference to armourstone production. Engineering Geology, 87(1-2), 60–74.
  • Li, J. J., Hu, M. S., Ding, E. J., Kong, W., Pan, D. M., & Chen, S. E. (2016). Multi-parameter numerical simulation of dynamic monitoring of rock deformation in deep mining. International Journal of Mining Science and Technology, 26(5), 851–855.
  • Li, X. B., Tao, M., Wu, C. Q., Du, K., & Wu, Q. H. (2017). Spalling strength of rock under different static pre-confining pressures. International Journal of Impact Engineering, 99, 69–74.
  • Li, X. B., Zhou, Z. L., Zhao, F. J., Zuo, Y. J., Ma, C. D., Ye, Z. Y., & Hong, L. (2009). Mechanical properties of rock under coupled static-dynamic loads. Journal of Rock Mechanics and Geotechnical Engineering, 1(1), 41–47.
  • Li, X. B., Lok, T. S., & Zhao, J. (2005). Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mechanics and Rock Engineering, 38(1), 21–39.
  • Li, X. B., Lok, T. S., Zhao, J., & Zhao, P. J. (2000). Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks. International Journal of Rock Mechanics and Mining Sciences, 37(7), 1055–1060.
  • Liang, C. Y., Zhang, Q. B., Li, X., & Xin, P. (2016). The effect of specimen shape and strain rate on uniaxial compressive behaviour of rock material. Bulletin of Engineering Geology and the Environment, 75(4), 1669–1681.
  • Liu, N., Li, M., & Chen, W. M. (2017). Mechanical deterioration of rock salt at different confinement levels: A grain-based lattice scheme assessment. Computers and Geotechnics, 84, 210–224.
  • Liu, E. L., & He, S. M. (2012). Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Engineering Geology, 125, 81–91.
  • Mishra, S., Meena, H., Chakraborty, T., Chandel, P., & Singh, M. (2017). High strain rate characterization of Himalayan dolomite. Procedia Engineering, 173, 822–829.
  • Mohr, D., Gary, G., & Lundberg, B. (2010). Evaluation of stress-strain curve estimates in dynamic experiments. International Journal of Impact Engineering, 37(2), 161–169.
  • Munoz, H., Taheri, A., & Chanda, E. K. (2016). Pre-peak and post-peak rock strain characteristics during uniaxial compression by 3D digital image correlation. Rock Mechanics and Rock Engineering, 49(7), 2541–2554.
  • Niu, Y., Li, K. G., Liu, D. K., Li, X. L., & Peng, S. J. (2015). Experimental investigation on shock mechanical properties of red sandstone under preloaded 3D static stresses. Journal of Engineering Science and Technology Review, 8(5), 205–211.
  • Rossmanith, H. P. (2014). Rock fracture mechanics. New York, NY: Springer.
  • Saksala, T., Hokka, M., & Kuokkala, V. T. (2017). Numerical 3D modeling of the effects of strain rate and confining pressure on the compressive behaviour of Kuru granite. Computers and Geotechnics, 88, 1–8.
  • Saksala, T. (2016). Numerical study of the influence of hydrostatic and confining pressure on percussive drilling of hard rock. Computers and Geotechnics, 76, 120–128.
  • Sun, Y. K., Li, Q., Yang, D. X., Fan, C. K., & Sun, A. (2016). Investigation of the dynamic strain responses of sandstone using multichannel fiber-optic sensor arrays. Engineering Geology, 213, 1–10.
  • Tian, H. M., Chen, W. Z., Yang, D. S., & Yang, J. P. (2015). Experimental and numerical analysis of the shear behaviour of cemented concrete-rock joints. Rock Mechanics and Rock Engineering, 48(1), 213–222.
  • Wang, Z. L., & Shi, G. Y. (2017). Effect of heat treatment on dynamic tensile strength and damage behaviour of medium-fine-grained Huashan granite. Experimental Techniques, 41, 1–11.
  • Wang, P., Xu, J. Y., Fang, X. Y., & Wang, P. X. (2017). Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles. Engineering Geology, 221, 104–113.
  • Wang, P., Xu, J. Y., Liu, S., Wang, H. Y., & Liu, S. H. (2016). Static and dynamic mechanical properties of sedimentary rock after freeze-thaw or thermal shock weathering. Engineering Geology, 210, 148–157.
  • Wang, Q. Z., Li, W., & Song, X. L. (2006). A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure and Applied Geophysics, 163(5-6), 1091–1100.
  • Wu, B. B., Chen, R., & Xia, K. W. (2015). Dynamic tensile failure of rocks under static pre-tension. International Journal of Rock Mechanics and Mining Sciences, 80, 12–18.
  • Xia, K. W., & Yao, W. (2015). Dynamic rock tests using split Hopkinson (Kolsky) bar system—A review. Journal of Rock Mechanics and Geotechnical Engineering, 7(1), 27–59.
  • Zhang, P., Mishra, B., & Heasley, K. A. (2015). Experimental investigation on the influence of high pressure and high temperature on the mechanical properties of deep reservoir rocks. Rock Mechanics and Rock Engineering, 48(6), 2197–2211.
  • Zhang, Q. B., & Zhao, J. (2014). A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mechanics and Rock Engineering, 47(4), 1411–1478.
  • Zhao, Y. X., Liu, S. M., Jiang, Y. D., Wang, K., & Huang, Y. Q. (2016). Dynamic tensile strength of coal under dry and saturated conditions. Rock Mechanics and Rock Engineering, 49(5), 1709–1720.
  • Zhao, J., & Li, H. B. (2000). Experimental determination of dynamic tensile properties of a granite. International Journal of Rock Mechanics and Mining Sciences, 37(5), 861–866.
  • Zhou, Z. H., Zhang, Y. Q., Yang, G. A., & Wang, C. (2015). Experimental study on mechanical characteristics of dolomite under three-dimensional coupled static-dynamic loading. Journal of China Coal Society, 40(05), 1030–1036.
  • Zhou, Z. L., Li, X. B., Zou, Y., Jiang, Y. H., & Li, G. N. (2014). Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mechanics and Rock Engineering, 47(2), 495–505.
  • Zhou, Y. X., Xia, K., Li, X. B., Li, H. B., Ma, G. W., Zhao, J., … Dai, F. (2012). Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. International Journal of Rock Mechanics and Mining Sciences, 49, 105–112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.