654
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of elevated temperature on compressive strength and microstructure of alkali activated slag based cements

& ORCID Icon
Pages 924-938 | Received 24 May 2018, Accepted 05 Dec 2018, Published online: 20 Jan 2019

References

  • Alehyen, S., Achouri, M. E. L., & Taibi, M. (2017). Characterization, microstructure and properties of fly ash-based geopolymer. Journal of Materials and Environmental Sciences, 8(5), 1783–1796.
  • Angulo-Ramírez, D. E., Mejía de Gutiérrez, R., & Puertas, F. (2017). Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. Construction and Building Materials, 140, 119–128. doi:10.1016/j.conbuildmat.2017.02.092
  • ASTM C597. (2016). Standard test method for pulse velocity through concrete. West Conshohocken, PA: American Society for Testing and Materials. doi:10.1520/C0597-09
  • ASTM International. (2016). Standard test method for compressive strength of cylindrical concrete specimens (ASTM C39). West Conshohocken, PA: American Society for Testing and Materials. doi:10.1520/C0039
  • Bernal, S. A., Rodríguez, E. D., Mejía De Gutiérrez, R., Gordillo, M., & Provis, J. L. (2011). Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of Materials Science, 46(16), 5477–5486. doi:10.1007/s10853-011-5490-z
  • Bilim, C., & Ati, C. D. (2012). Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag. Construction and Building Materials, 28(1), 708–712. doi:10.1016/j.conbuildmat.2011.10.018
  • Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering, 16(3), 205–210. doi:10.1016/S0892-6875(03)00008-6
  • Choi, Y. C., Kim, J. H., & Choi, S. (2014). Mechanical performance of fly-ash-based green geopolymer composites subjected to elevated temperatures. Asian Journal of Chemistry, 26(17), 5517–5521. doi:10.14233/ajchem.2014.18146
  • Collins, F. G., & Sanjayan, J. G. (1999). Workability and mechanical properties of alkali activated slag concrete. Cement and Concrete Research, 29(3), 455–458. doi:10.1016/S0008-8846(98)00236-1
  • Criado, M., Aperador, W., & Sobrados, I. (2016). Microstructural and mechanical properties of alkali activated Colombian raw materials. Materials, 9(3), 158. doi:10.3390/ma9030158
  • Douglas, E., Bilodeau, A., Brandstetr, J., & Malhotra, V. M. (1991). Alkali activated ground granulated blast-furnace slag concrete: Preliminary investigation. Cement and Concrete Research, 21(1), 101–108. doi:10.1016/0008-8846(91)90036-H
  • Duxson, P., Lukey, G. C., & Van Deventer, J. S. J. (2007). Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. Journal of Materials Science, 42(9), 3044–3054. doi:10.1007/s10853-006-0535-4
  • Fernandez-Jimenez, A., Flores, E., Maltseva, O., Garcia-Lodeiro, I., & Palomo, A. (2013). Hybrid alkaline cements. Part Iii. Durability and industrial applications. Revista Romana De Materiale-Romanian Journal of Materials, 43(2), 195–200.
  • Guerrieri, M., Sanjayan, J., & Collins, F. (2009). Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures. Fire and Materials, 33(1), 983. doi:10.1002/fam.983
  • Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. doi:10.14359/13485
  • Jiang, W., Silsbee, M. R., & Roy, D. M. (1997). Similarities and differences of microstructure and macro properties between portland and blended cement. Cement and Concrete Research, 27(10), 1501–1511. doi:10.1016/S0008-8846(97)00169-5
  • Long, W. J., Wei, J. J., Gu, Y. C., & Xing, F. (2017). Research on dynamic mechanical properties of alkali activated slag concrete under temperature-loads coupling effects. Construction and Building Materials, 154, 687–696. doi:10.1016/j.conbuildmat.2017.08.015
  • Mendes, A., Sanjayan, J., & Collins, F. (2008). Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures. Materials and Structures, 41(2), 345–350. doi:10.1617/s11527-007-9247-8
  • Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., & Fernández-Jiménez, A. (2014). A review on alkaline activation: new analytical perspectives. Materiales de Construcción, 64(315), e022. doi:10.3989/mc.2014.00314
  • Palomo, A., Maltseva, O., Garcia-Lodeiro, I., & Fernandez-Jimenez, A. (2013). Hybrid alkaline cements. Part Ii: The clinker factor. Revista Romana De Materiale-Romanian Journal of Materials, 43(1), 74–80.
  • Pangdaeng, S., Phoo-Ngernkham, T., Sata, V., & Chindaprasirt, P. (2014). Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Materials and Design, 53, 269–274. doi:10.1016/j.matdes.2013.07.018
  • Puertas, F., Varga, C., Palacios, M., Pellerin, B., Eychenne-Baron, C., Babayan, D., …., Elkhadiri, I. (2011). Alkali-activation of slag cements: Activation process, microstructure and mechanical properties. In 13th International Congress on the Chemistry of Cement (pp. 1–7).
  • Qu, B., Martin, A., Pastor, J. Y., Palomo, A., & Fernández-Jiménez, A. (2016). Characterisation of pre-industrial hybrid cement and effect of pre-curing temperature. Cement and Concrete Composites, 73, 281–288. doi:10.1016/j.cemconcomp.2016.07.019
  • Rashad, A. M., Bai, Y., Basheer, P. A. M., Collier, N. C., & Milestone, N. B. (2012). Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cement and Concrete Research, 42(2), 333–343. doi:10.1016/j.cemconres.2011.10.007
  • Rickard, W. D. A., Kealley, C. S., & Van Riessen, A. (2015). Thermally induced microstructural changes in fly ash geopolymers: Experimental results and proposed model. Journal of the American Ceramic Society, 98(3), 929–939. doi:10.1111/jace.13370
  • Shi, C., Krivenko, P. V., & Roy, D. M. (2006). Alkali-activated cements and concretes. Boca Raton, FL: CRC Press.
  • Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., & Alnahhal, M. F. (2017). Incorporation of nano-materials in cement composite and geopolymer based paste and mortar – A review. Construction and Building Materials, 148, 62–84. doi:10.1016/j.conbuildmat.2017.04.206
  • Valencia Saavedra, W. G., & Mejía de Gutiérrez, R. (2017). Performance of geopolymer concrete composed of fly ash after exposure to elevated temperatures. Construction and Building Materials, 154, 229–235. doi:10.1016/j.conbuildmat.2017.07.208
  • Wang, H. Y. (2008). The effects of elevated temperature on cement paste containing GGBFS. Cement and Concrete Composites, 30(10), 992–999. doi:10.1016/j.cemconcomp.2007.12.003
  • Wianglor, K., Sinthupinyo, S., Piyaworapaiboon, M., & Chaipanich, A. (2017). Effect of alkali-activated metakaolin cement on compressive strength of mortars. Applied Clay Science, 141, 272–279. doi:10.1016/j.clay.2017.01.025
  • Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. doi:10.1016/S0301-7516(99)00074-5
  • Zhang, Y. J., Li, S., Wang, Y. C., & Xu, D. L. (2012). Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. Journal of Non-Crystalline Solids, 358(3), 620–624. doi:10.1016/j.jnoncrysol.2011.11.006
  • Zuda, L., & Černý, R. (2009). Measurement of linear thermal expansion coefficient of alkali-activated aluminosilicate composites up to 1000 °C. Cement and Concrete Composites, 31(4), 263–267. doi:10.1016/j.cemconcomp.2009.02.002
  • Zuda, L., Pavlík, Z., Rovnaníková, P., Bayer, P., & Černý, R. (2006). Properties of alkali activated aluminosilicate material after thermal load. International Journal of Thermophysics, 27(4), 1250–1263. doi:10.1007/s10765-006-0077-7
  • Zulkifly, K., Yong, H. C., Abdullah, M. M. A. B., Ming, L. Y., Panias, D., & Sakkas, K. (2017). Review of geopolymer behaviour in thermal environment. Iop Conference Series: Materials Science and Engineering, 209, 12085. doi:10.1088/1757-899X/209/1/012085

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.