421
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

2D numerical analysis of a cantilever retaining wall backfilled with sand–tire chips mixtures

, , ORCID Icon &
Pages 1119-1135 | Received 07 Jun 2017, Accepted 11 Jan 2019, Published online: 01 Mar 2019

References

  • Ahmed, I. (1993). Laboratory study on properties of rubber-soils (Report No. FHWA/IN/JHRP-93/4). West Lafayette, IN: Purdue University.
  • Ahn, I.-S., & Cheng, L. (2014). Tire derived aggregate for retaining wall backfill under earthquake loading. Construction & Building Materials, 57, 105–116. doi: 10.1016/j.conbuildmat.2014.01.091
  • Anderson, D. G., Martin, G. R., Lam, I. P., & Wang, J. N. (2008). Seismic analysis and design of retaining walls, buried structures, slopes, and embankments (NCHRP Report No 611). Washington, DC: Transp Res Board Proj.
  • ASTM (2004). ASTM D 6270-98, Standard practice for use of scrap tires in civil engineering applications, Re approved Edition 2004. West Conshohocken, PA, USA: American Society for Testing and Materials.
  • Basel Convention. (2011). Technical guidelines for the environmentally sound management of used and waste pneumatic tyres in UNEP/CHW.10/6/Add. 1/Rev.1. U.B. Convention, Editor.
  • Brinkgreve, R. B. J., Bakker, K. J., & Bonnier, P. G. (2006). The relevance of small-strain soil stiffness in numerical simulation of excavation and tunneling projects. In Proceedings of 6th European Conference in Geotechnical Engineering, Graz, Austria, 133–139.
  • Cakir, T. (2014). Backfill and subsoil interaction effects on seismic behavior of a cantilever wall. Geomechanics & Engineering, 6(2), 117–138. doi: 10.12989/gae.2014.6.2.117
  • Cakir, T. (2013). Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil–structure interaction. Soil Dynamics & Earthquake Engineering, 45, 96–111. doi: 10.1016/j.soildyn.2012.11.008
  • Cecich, V., Gonzales, L., Hoisaeter, A., Williams, J., & Reddy, K. (1996). Use of shredded tires as lightweight backfill material for retaining structures. Waste Management & Research, 14(5), 433–451. doi: 10.1177/0734242X9601400503
  • Dammala, P. K., Sodom, B. R., & Adapa, M. K. (2015). Experimental investigation of applicability of sand tire chip mixtures as retaining wall backfill. In IFCEE 2015 (ASCE) (pp. 1420–1429). doi: 10.1061/9780784479087.128
  • Dawson, E. M., Roth, W. H., & Drescher, A. (1999). Slope stability analysis by strength reduction. Geotechnique, 49(6), 835–840. doi: 10.1680/geot.1999.49.6.835
  • EPA (2011). Tire fires. Retrieved from http://www.epa.gov/osw/conserve/materials/tires/fires.htm
  • ETRMA ELTs (2015). End-of-life tyres management report. Retrieved from http://www.etrma.org/uploads/Modules/Documentsmanager/elt-report-v9a-final.pdf
  • Federal Highway Administration (FHWA). (2008). User guidelines for waste and by product materials in pavement construction (Report No. FHWA-RD-97-148).
  • Huggins, E., & Ravichandran, N. (2011). Numerical study on the dynamic behavior of retaining walls backfilled with shredded tires. In ASCE proceedings of GeoRisk 2011 (pp. 955–962), June 26–28, Atlanta, GA, Reston. doi: 10.1061/41183(418)103
  • Humphrey, D. N. (2003). Civil engineering applications using Tire Derived Aggregate (TDA). California Integrated Waste Management Board.
  • Humphrey, D. N., Sandford, T. C., Cribbs, M. M., Gharegrat, H., & Manion, W. P. (1992). Tire chips as lightweight backfill for retaining walls. Phase I. A Study for the New England Transportation Consortium. Department of Civil Engineering, University of Maine, Orono, ME.
  • Lazizi, A., Trouzine, H., Asroun, A., & Belabdelouahab, F. (2014). Numerical simulation of tire reinforced sand behind retaining wall under earthquake excitation. Engineering, Technology & Applied Science Research, 4(2), 605–611.
  • Ledesma, O. N., García Mendive, I., & Sfriso, A. O. (2016). Factor of safety by the strength–reduction technique applied to the Hoek–Brown model. In S. Giusti, M. Pucheta, & M. Storti (Eds.), Mecánica computacional (Vol. 34, pp. 2599–2622), Córdoba, November 8–11.
  • Lee, H. J., & Roh, H. S. (2007). The use of recycled tire chips to minimize dynamic earth pressure during compaction of backfill. Construction & Building Materials, 21(5), 1016–1026. doi: 10.1016/j.conbuildmat.2006.02.003
  • Luco, J. E., & Hadjian, A. H. (1974). Two-dimensional approximations to the three-dimensional soil–structure interaction problem. Nuclear Engineering & Design, 31(2), 195–203. doi: 10.1016/0029-5493(75)90141-7
  • Matsui, T., & San, K. C. (1992). Finite element slope stability analysis by shear strength reduction technique. Soils & Foundations, 32(1), 59–70. doi: 10.3208/sandf1972.32.59
  • Pitilakis, K., Karapetrou, S., & Tsagdi, K. (2015). Numerical investigation of the seismic response of RC buildings on soil replaced with rubber–sand mixtures. Soil Dynamics & Earthquake Engineering, 79, 237–252. doi: 10.1016/j.soildyn.2015.09.018
  • Ravichandran, N., & Huggins, L. (2014). Applicability of shredded tire chips as a lightweight retaining wall backfill in seismic regions. In Proceedings of geo-congress (GSP 234) (pp. 3496–3505), ASCE, Atlanta. doi: 10.1061/9780784413272.339
  • Reddy, S. B., & Krishna, A. M. (2017). Sand–tire chip mixtures for sustainable geoengineering applications. In Sustainability issues in civil engineering (pp. 223–241). Singapore: Springer. doi: 10.1007/978-981-10-1930-2_13
  • Reddy, S. B., & Krishna, A. M. (2015). Recycled tire chips mixed with sand as lightweight backfill material in retaining wall applications: An experimental investigation. International Journal of Geosynthetics & Ground Engineering, 1(4), 31. doi: 10.1007/s40891015-0036-0
  • Reddy, S. B., Kumar, D. P., & Krishna, A. M. (2015). Evaluation of optimum mixing ratio of sand tire chips mixture for geo-engineering applications. Journal of Materials in Civil Engineering, 28(2), 06015007. doi: 10.1061/(ASCE)MT.1943-5533.0001335
  • Rothfuss, C., & Cha, C. Y. (1996). Utilization of a scrap tire-waste oil derived carbonous residue as an asphalt modifier. Polymer Recycling, 2(3), 201–212.
  • RS2. (2016). Computer software]. A two-dimensional elasto plastic finite element program and its user’s manual. (Phase2) ver. 9.016. Toronto-Canada: RocScience Inc.
  • Rubber Manufacturers Association (RMA). (2016). 2015 U.S. scrap tire management summary. Retrieved from https://rma.org/sites/default/files/RMA_scraptire_summ_2015_0.pdf
  • Shrestha, S., Ravichandran, N., Raveendra, M., & Attenhofer, J. A. (2016). Design and analysis of retaining wall backfilled with shredded tire and subjected to earthquake shaking. Soil Dynamics & Earthquake Engineering, 90, 227–239. doi: 10.1016/j.soildyn.2016.08.034
  • Singh, V. P., & Babu, G. L. S. (2010). 2D numerical simulations of soil nail walls. Geotechnical & Geological Engineering, 28(4), 299–309. 9292-x doi: 10.1007/s10706-009
  • Sodom, B. R., Adapa, M. K., & Dasaka, S. M. (2015). Seismic resilience of retaining walls backfilled with sand–tire chips mixtures. Japanese Geotechnical Society Special Publication, 3(2), 20–23. doi: 10.3208/jgssp.v03.i08
  • Tajabadipour, M., & Marandi, M. (2016). Effect of rubber tire chips–sand mixtures on performance of geosynthetic reinforced Earth walls. Periodica Polytechnica Civil Engineering, 61(2), 322. doi: 10.3311/PPci.9539
  • Trouzine, H., Asroun, A., Asroun, N., Belabdelouahab, F., & Long, N. T. (2011). Title in French: Problématique des Pneumatiques Usagés en Algérie [Title in English: The problem of used tires in Algeria]. Nature & Technologie, 5, 28–35.
  • Veletsos, A. S., & Younan, A. H. (1997). Dynamic response of cantilever walls. ASCE Journal of Geotechnical Engineering, 123(2), 161–172. doi: 10.1061/(ASCE)1090-0241(1997)123:2(161)
  • Veletsos, A. S., & Younan, A. H. (1994a). Dynamic soil pressures on rigid vertical walls. Earthquake Engineering & Structural Dynamics, 23(3), 275–301. doi: 10.1002/eqe.4290230305
  • Veletsos, A. S., & Younan, A. H. (1994b). Dynamic modeling and response of soil-wall systems. ASCE Journal of Geotechnical Engineering, 120(12), 2155–2179. doi: 10.1061/(ASCE)0733-9410(1994)120:12(2155)
  • Wang, J. G. (1996). A homogenization theory for geomaterials: Nonlinear effect and water flow (Dr. Eng. Thesis). Japan: Nagoya University.
  • Wang, C.-Y., Cheng, J.-H., Shih, H.-P., & Chang, J.-W. (2011). Ring columns as pier scour countermeasures. International Journal of Sediment Research, 26(3), 353–363. doi: 10.1016/S1001-6279(11)60099-1
  • Wang, J. G., Leung, C. F., & Ichikawa, Y. (2002). A simplified homogenisation method for composite soils. Computers & Geotechnics, 29(6), 477–500. doi: 10.1016/S0266-352X(02)00004-6
  • Wolf, J. P. (1994). Foundation vibration analysis using simple physical models. Englewood Cliffs, NJ: Prentice-Hall.
  • Wolf, J. P., & Song, C. (2002). Some cornerstones of dynamic soil–structure interaction. Engineering Structures, 24(1), 13–28. doi: 10.1016/S0141-0296(01)00082-7
  • Xiao, M., Bowen, J., Graham, M., & Larralde, J. (2012). Comparison of seismic responses of geosynthetically reinforced walls with tire-derived aggregates and granular backfills. Journal of Materials in Civil Engineering, 24(11), 1368–1377. doi: 10.1061/(ASCE)MT.1943-5533.0000514
  • Youwai, S., & Bergado, D. T. (2003). Strength and deformation characteristics of shredded rubber tire–sand mixtures. Canadian Geotechnical Journal, 40(2), 254–264. doi: 10.1139/t02-104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.