218
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Triaxial behaviour of a cemented sand reinforced with Kenaf fibres

, &
Pages 1268-1286 | Received 03 Jan 2018, Accepted 10 Jan 2019, Published online: 01 Mar 2019

References

  • Ahmad, F., Bateni, F., & Azmi, M. (2010). Performance evaluation of silty sand reinforced with fibers. Geotextiles and Geomembranes, 28(1), 93–99. doi:10.1016/j.geotexmem.2009.09.017
  • Akil, H., Omar, M. F., Mazuki, A. A. M., Safiee, S. Z. A. M., Ishak, Z. M., & Bakar, A. A. (2011). Kenaf fiber reinforced composites: A review. Materials and Design, 32(8–9), 4107–4121. doi:10.1016/j.matdes.2011.04.008
  • Anvari, S. M., Shooshpasha, I., & Kutanaei, S. S. (2017). Effect of granulated rubber on shear strength of fine-grained sand. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 936–944. doi:10.1016/j.jrmge.2017.03.008
  • ASTM (1998). Annual book of ASTM standards: Soils and rock division. West Conshohocken, PA: Author.
  • Bishop, A. W., & Henkel, D. J. (1969). The measurement of soil properties in triaxial tests. London and Beccles: William Clowes and Sons Limited.
  • Botero, E., Ossa, A., Sherwell, G., & Ovando-Shelley, E. (2015). Stress–strain behavior of a silty soil reinforced with polyethylene terephthalate (PET). Geotextiles and Geomembranes, 43(4), 363–369.
  • Cabalar, A. F., & Karabash, Z. (2014). California bearing ratio of a sub-base material modified with tire buffings and cement addition. Journal of Testing and Evaluation, 43, 1279–1287.
  • Cabalar, A. F., Karabash, Z., & Mustafa, W. S. (2014). Stabilising a clay using tyre buffings and lime. Road Materials and Pavement Design, 15(4), 872–891. doi:10.1080/14680629.2014.939697
  • Choobbasti, A., & Kutanaei, S. S. (2017a). Effect of fiber reinforcement on deformability properties of cemented sand. Journal of Adhesion Science and Technology, 31, 1576–1590.
  • Choobbasti, A. J., & Kutanaei, S. S. (2017b). Microstructure characteristics of cement-stabilized sandy soil using nanosilica. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 981–988. doi:10.1016/j.jrmge.2017.03.015
  • Choobbasti, A. J., & Kutanaei, S. S. (2018). Dynamic equivalent soil characteristics identification using earthquake records. Earthquake Science, 3, 005.
  • Choobbasti, A. J., Tavakoli, H., & Kutanaei, S. S. (2014). Modeling and optimization of a trench layer location around a pipeline using artificial neural networks and particle swarm optimization algorithm. Tunneling and Underground Space Technology, 40, 192–202. doi:10.1016/j.tust.2013.10.003
  • Choobbasti, A. J., Vafaei, A., & Kutanaei, S. S. (2015). Mechanical properties of sandy soil improved with cement and nanosilica. Open Engineering, 5, 111–116.
  • Choobbasti, A. J., Vafaei, A., & Kutanaei, S. S. (2018). Static and cyclic triaxial behavior of cemented sand with nanosilica. Journal of Materials in Civil Engineering, 30(10), 04018269. doi:10.1061/(ASCE)MT.1943-5533.0002464
  • Consoli, N. C., Bassani, M. A. A., & Festugato, L. (2010). Effect of fiber-reinforcement on the shear strength of cemented soils. Geotextiles and Geomembranes, 28(4), 344–351. doi:10.1016/j.geotexmem.2010.01.005
  • Consoli, N. C., Casagrande, M. D. T., & Coop, M. R. (2007). Performance of a fibre-reinforced sand at large shear strains. Géotechnique, 57(9), 751–756. doi:10.1680/geot.2007.57.9.751
  • Consoli, N. C., Montardo, J. P., Donato, M., & Prietto, P. D. M. (2004). Effect of material properties on the behaviour of sand–cement–fibre composites. Ground Improvement, 8(2), 77–90. doi:10.1680/grim.8.2.77.36370
  • Consoli, N. C., Prietto, P. D. M., & Ulbrich, L. A. (1998). Influence of fiber and cement addition on behavior of sandy soils. Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1211–1214. doi:10.1061/(ASCE)1090-0241(1998)124:12(1211)
  • Consoli, N. C., Vendruscolo, M. A., Fonini, A., & Dalla Rosa, F. (2009). Fiber reinforcement effects on sand considering a wide cementation range. Geotextiles and Geomembranes, 27(3), 196–203. doi:10.1016/j.geotexmem.2008.11.005
  • Coop, M. R., & Atkinson, J. H. (1993). The mechanics of cemented carbonate sands. Geotechnique, 43(1), 53–67. doi:10.1680/geot.1993.43.1.53
  • Diambra, A., Ibraim, E., Wood, D. M., & Russell, A. R. (2010). Fibre reinforced sands: experiments and modelling. Geotextiles and Geomembranes, 28(3), 238–250. doi:10.1016/j.geotexmem.2009.09.010
  • Dhar, S., & Hussain, M. (2018). The strength behavior of lime-stabilized plastic fiber-reinforced clayey soil. Road Materials and Pavement Design, 1, 1–22. doi:10.1080/14680629.2018.1468803
  • Edil, T. B., & Bosscher, P. J. (1994). Engineering properties of tire chips and soil mixtures. Geotechnical Testing Journal, 17(4), 453–464. doi:10.1520/GTJ10306J
  • Edincliler, A., Cabalar, A. F., Cagatay, A., & Cevik, A. (2012). Triaxial compression behavior of sand and tire wastes using neural networks. Neural Computing and Applications, 21(3), 441–452. doi:10.1007/s00521-010-0430-4
  • Gao, Z., & Zhao, J. (2013). Evaluation on failure of fiber-reinforced sand. Journal of Geotechnical and Geoenvironmental Engineering, 139(1), 95–106. doi:10.1061/(ASCE)GT.1943-5606.0000737
  • Haeri, S. M., Hamidi, A., & Tabatabaee, N. (2005). The effect of gypsum cementation on the mechanical behavior of gravely sands. Geotechnical Testing Journal, 28, 180–190.
  • Haeri, S. M., Noorzad, R., & Oskoorouchi, A. M. (2000). Effect of geotextile reinforcement on the mechanical behavior of sand. Geotextiles and Geomembranes, 18(6), 385–402. doi:10.1016/S0266-1144(00)00005-4
  • Hamidi, A., & Hooresfand, M. (2013). Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1–9. doi:10.1016/j.geotexmem.2012.10.005
  • Head, K. H. (1986). Manual of soil laboratory testing, vol. 3. London, UK: Pentech Press.
  • Ibrahim, E., Diambra, A., Russell, A. R., & Muir Wood, D. (2012). Assessment of laboratory sample preparation for fiber reinforced sands. Canadian Geotechnical Journal, 34, 69–79. doi:10.1016/j.geotexmem.2012.03.002
  • Jamei, M., Villard, P., & Guiras, H. (2013). Shear failure criterion based on experimental and modeling results for fiber-reinforced clay. International Journal of Geomechanics, 13(6), 882–893. doi:10.1061/(ASCE)GM.1943-5622.0000258
  • Janalizadeh, A., Kutanaei, S. S., & Ghasemi, E. (2013). Control volume finite element modeling of free convection inside an inclined porous enclosure with a sinusoidal hot wall. Scientia Iranica, 20, 1401–1409.
  • Kanchi, G., Neeraja, V., & SivakumarBabu, G. (2015). Effect of anisotropy of fibers on the stress-strain response of fiber-reinforced soil. International Journal of Geomechanics, 15(1), 06014016. doi:10.1061/(ASCE)GM.1943-5622.0000392
  • Kutanaei, S. S., & Choobbasti, A. J. (2013). Effect of the fluid weight on the liquefaction potential around a marine pipeline using CVFEM. Electronic Journal of Geotechnical Engineering, 18, 633–646.
  • Kutanaei, S. S., & Choobbasti, A. J. (2015a). Mesh-free modeling of liquefaction around a pipeline under the influence of trench layer. Acta Geotechnica, 10(3), 343–355. doi:10.1007/s11440-015-0381-0
  • Kutanaei, S. S., & Choobbasti, A. J. (2015b). Prediction of combined effects of fibers and cement on the mechanical properties of sand using particle swarm optimization algorithm. Journal of Adhesion Science and Technology, 29(6), 487–501. doi:10.1080/01694243.2014.995343
  • Kutanaei, S. S., & Choobbasti, A. J. (2016a). Triaxial behavior of fiber-reinforced cemented sand. Journal of Adhesion Science and Technology, 30(6), 579–593. doi:10.1080/01694243.2015.1110073
  • Kutanaei, S. S., & Choobbasti, A. J. (2016b). Experimental study of combined effects of fibers and nanosilica on mechanical properties of cemented sand. Journal of Materials in Civil Engineering, 28(6), 06016001. doi:10.1061/(ASCE)MT.1943-5533.0001521
  • Kutanaei, S., & Choobbasti, A. (2017). Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented Sand. Journal of Materials in Civil Engineering, 29, 04016230.
  • Kutanaei, S. S., & Choobbasti, A. J. (2019). Prediction of liquefaction potential of sandy soil around a submarine pipeline under earthquake loading. Journal of Pipeline Systems Engineering and Practice, 10(2), 04019002. doi:10.1061/(ASCE)PS.1949-1204.0000349
  • Kutanaei, S. S., Ghasemi, E., & Bayat, M. (2011). Mesh-free modeling of two-dimensional heat conduction between eccentric circular cylinders. International Journal of Physical Sciences, 6, 4044–4052.
  • Kutanaei, S. S., Roshan, N., Vosoughi, A., Saghafi, S., Barari, A., & Soleimani, S. (2012). Numerical solution of stokes flow in a circular cavity using mesh-free local RBF-DQ. Engineering Analysis with Boundary Elements, 36(5), 633–638. doi:10.1016/j.enganabound.2011.11.009
  • Lade, P. V., & Overton, D. D. (1989). Cementation effects in frictional materials. Journal of Geotechnical Engineering, 115(10), 1373–1387. doi:10.1061/(ASCE)0733-9410(1989)115:10(1373)
  • Ladd, R. S. (1978). Preparing test specimens using under compaction. Geotechnical Testing Journal, 1, 16–23. doi:10.1520/GTJ10364J
  • Lambe, T. W., & Whitman, R. V. (1979). Soil mechanics. New Delhi: Wiley Eastern Limited.
  • Liu, J., Wang, G., Kamai, T., Zhang, F., Yang, J., & Shi, B. (2011). Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring shear tests. Canadian Geotechnical Journal, 29, 462–471. doi:10.1016/j.geotexmem.2011.03.002
  • Maher, M. H., & Gray, D. H. (1990). Static response of reinforced with randomly distributed fibers. Journal of Geotechnical Engineering, 116(11), 1661–1677. doi:10.1061/(ASCE)0733-9410(1990)116:11(1661)
  • Mashhadban, H., Beitollahi, A., & Kutanaei, S. S. (2016). Identification of soil properties based on accelerometer records and comparison with other methods. Arabian Journal of Geosciences, 9, 427–525.
  • Malidarreh, N. R., Shooshpasha, I., Mirhosseini, S. M., & Dehestani, M. (2018a). Effects of recycled Polyethylene terephthalate fibers on strength behavior of cemented Babolsar sand. Scientia Iranica, 25, 1275. doi:10.24200/sci.2018.5468.1295
  • Malidarreh, N. R., Shooshpasha, I., Mirhosseini, S. M., & Dehestani, M. (2018b). Effects of reinforcement on mechanical behaviour of cement treated sand using direct shear and triaxial tests. International Journal of Geotechnical Engineering, 12(5), 491–499. doi:10.1080/19386362.2017.1298300
  • Mashhadban, H., Kutanaei, S. S., & Sayarinejad, M. A. (2016). Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network. Construction and Building Materials, 119, 277–287. doi:10.1016/j.conbuildmat.2016.05.034
  • Moghal, A. A. B., Chittoori, B. C., & Basha, B. M. (2018). Effect of fiber reinforcement on CBR behavior of lime-blended expansive soils: reliability approach. Road Materials and Pavement Design, 19(3), 690–709. doi:10.1080/14680629.2016.1272479
  • Noorzad, R., & Amini, P. F. (2014). Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading. Soil Dynamics and Earthquake Engineering, 66, 281–292. doi:10.1016/j.soildyn.2014.07.011
  • Pino, L. F. M., & Baudet, B. A. (2015). The effect of the particle size distribution on the mechanics of fiber-reinforced sands under one-dimensional compression. Geotextiles and Geomembranes, 43, 250–258. doi:10.1016/j.geotexmem.2015.02.004
  • Qu, J., & Zhao, D. (2016). Stabilizing the cohesive soil with palm fiber sheath strip. Road Materials and Pavement Design, 17(1), 87–103. doi:10.1080/14680629.2015.1064010
  • Rezaei, S., Choobbasti, A. J., & Kutanaei, S. S. (2015). Site effect assessment using microtremor measurement, equivalent linear method, and artificial neural network (case study: Babol, Iran). Arabian Journal of Geosciences, 8(3), 1453–1466. doi:10.1007/s12517-013-1201-1
  • Sarokolayi, L. K., Beitollahi, A., Abdollahzadeh, G. R., Amreie, S. T. R., & Kutanaei, S. S. (2015). Modeling of ground motion rotational components for near-fault and far-fault earthquake according to soil type. Arabian Journal of Geosciences, 8(6), 3785–3797. doi:10.1007/s12517-014-1409-8
  • Sarokolayi, L. K., Kutanaei, S. S., Golafshani, S. M. I., Haji, S. R. H., & Mashhadban, H. (2016). Control-volume-based finite element modelling of liquefaction around a pipeline. Geomatics, Natural Hazards and Risk, 7(4), 1287–1306. doi:10.1080/19475705.2015.1060638
  • Shukla, S., Sivakugan, N., & Das, B. (2009). Fundamental concepts of soil reinforcement—an overview. International Journal of Geotechnical Engineering, 33, 329–342. doi:10.3328/IJGE.2009.03.03.329-342
  • Skempton, A. W. (1954). The Pore-Pressure Coefficients A and B. Géotechnique, 4(4), 143–147. doi:10.1680/geot.1954.4.4.143
  • SivakumarBabu, G. L., & Vasudevan, A. K. (2008). Strength and stiffness response of coir fiber-reinforced tropical soil. Journal of Materials in Civil Engineering, 20, 571–577. doi:10.1061/(ASCE)0899-1561(2008)20:9(571)
  • SivakumarBabu, G. L., Vasudevan, A. K., & Haldar, S. (2008). Numerical simulation of fiber-reinforced sand behavior. Geotextiles and Geomembranes, 26, 181–188. doi:10.1016/j.geotexmem.2007.06.004
  • Shao, W., Cetin, B., Li, Y., Li, J., & Li, L. (2014). Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber. Geotechnical and Geological Engineering, 32(4), 901–910. doi:10.1007/s10706-014-9766-3
  • Tang, C., Shi, B., Cui, Y., Liu, C., & Gu, K. (2012). Desiccation cracking behavior of polypropylene fiber-reinforced clayey soil. Canadian Geotechnical Journal, 49(9), 1088–1101. doi:10.1139/t2012-067
  • Tavakoli, H., & Kutanaei, S. S. (2015). Evaluation of effect of soil characteristics on the seismic amplification factor using the neural network and reliability concept. Arabian Journal of Geosciences, 8(6), 3881–3891. doi:10.1007/s12517-014-1458-z
  • Tavakoli, H. R., Omran, O. L., Kutanaei, S. S., & Shiade, M. F. (2014). Prediction of energy absorption capability in fiber reinforced self-compacting concrete containing nanosilica particles using artificial neural network. Latin American Journal of Solids and Structures, 11(6), 966–979. doi:10.1590/S1679-78252014000600004
  • Tavakoli, H. R., Omran, O. L., Shiade, M. F., & Kutanaei, S. S. (2014). Prediction of combined effects of fibers and nano-silica on the mechanical properties of self-compacting concrete using artificial neural network. Latin American Journal of Solids and Structures, 11(11), 1906–1923. doi:10.1590/S1679-78252014001100002
  • Yaghoubi, M., Shukla, S. K., & Mohyeddin, A. (2018). Effects of addition of waste tyre fibers and cement on the engineering behavior of Perth sand. Geomechanics and Geoengineering, 13(1), 42–53. doi:10.1080/17486025.2017.1325941
  • Zornberg, J. G. (2002). Discrete framework for limit equilibrium analysis of fiber-reinforced soil. Géotechnique, 52(8), 593–604. doi:10.1680/geot.2002.52.8.593

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.