152
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Experimental investigation of discarded additive material combination and composition to appropriate thermal insulating properties of the composite cement mortar

, , &
Pages 1318-1328 | Received 05 Jul 2018, Accepted 28 Jan 2019, Published online: 12 Mar 2019

References

  • Adili, A., Lachheb, M., Brayek, A., Guizani, A., & Ben Nasrallah, S. (2016). Estimation of thermophysical properties of lightweight mortars made of wood shavings and expanded polystyrene beads using a hybrid algorithm. Energy and Building, 118, 133–141. doi:10.1016/j.enbuild.2016.02.039
  • Alex, J., Dhanalakshmi, J., & Ambedkar, B. (2016). Experimental investigation on rice husk ash as cement replacement on concrete production. Construction and Building Materials, 127, 353–362. doi:10.1016/j.conbuildmat.2016.09.150
  • Al-Homound, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40, 353–366. doi:10.100016/j.buildenv.2004.0500130
  • Aliabdo, A. A., Abd Elmoaty, A. E. M., & Aboshama, A. Y. (2016). Utilization of waste glass powder in the production of cement and concrete. Construction and Building Materials, 124, 866–877. doi:10.1016/j.conbuilmat.2016.08.016
  • Angelin, A. F., Cecche Lintz, R. C., Gachet-Barbosa, L. A., & Osorio, W. R. (2017). The effects of porosity on mechanical behaviour and water absorption of an environmentally friendly cement mortar with recycled rubber. Construction and Building Materials, 151, 534–545. doi:10.1016/j.conbuildmat.2017.06.061
  • Antonio, J., Tadeu, A., Marques, B., Almeida, J. A. S., & Pinto, V. (2018). Application of rice husk in the development of new composite boards. Construction and Building Materials, 176, 432–439. doi:10.1016/j.conbuildmat.2018.05.028
  • ASTM. (2002). ASTM C109 Standard test method for compressive strength of hydraulic cement mortars
  • ASTM. (2000). ASTM C20 Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of masonry mortar.
  • Baoshan Huang, X. S. (2014). Recycling of waste tire rubber in Asphalt and Portland cement concrete: An overview. Construction and Building Materials, 67, 217–224. doi:10.1016/j.conbuildmat.2013.11.027
  • Buratti, C., Belloni, E., Lascaro, E., Merli, F., & Ricciardi, P. (2018). Rice husk panels for building applications: Thermal, acoustic and environmental characterization and comparison with other innovative recycled waste materials. Construction and Building Materials, 171, 338–349. doi:10.1016/j.conbuildmat.2018.03.089
  • Chao-Lung, H., Anh-Tuan, B. L., & Chun-Tsun, C. (2011). Effects of rice husk ash on the strength and durability characteristics of concrete. Construction and Building Materials, 25(9), 3768–3772. doi:10.1016/j.conbuildmat.2011.04.009
  • Chen, X., & Wu, S. (2013). Influence of water-to-cement ratio and curing period on pore structure of cement mortar. Construction and Building Materials, 38, 804–812. doi:10.1016/j.conbuildmat.2012.09.058
  • Donatello, S., Palomo, A., & Fernandez-Jimenez, A. (2013). Durability of very high volume fly ash cement pastes and mortars in aggressive solutions. Cement and Concrete Composites, 38, 12–20. doi:10.1016/j.cemconcomp.2013.03.001
  • Ferrandiz-Mas, V., & Garcia-Alcocel, E. (2013). Durability of expanded polystyrene mortars. Construction and Building Materials, 46, 175–182. doi:10.1016/j.conbuildmat.2013.04.029
  • Ganesan, K., Rajagopal, K., & Thangavel, K. (2007). Evaluation of bagasse ash as supplementary cementitious material. Cement and Concrete Composites, 29(6), 515–524. doi:10.1016/j.cemconcomp.2007.03.001
  • Garcia, R., Vigil de la Villa, R., Vegas, I., Frias, M., & Sanchez de Rojas, M. I. (2008). The pozzolanic properties of paper sludge waste. Construction and Building Materials, 22, 1484–1490. doi:10.1016/j.conbuildmat.2007.03.033
  • Grinys, A., Vaičiukynienė, D., Augonis, A., Sivilevičius, H., & Bistrickait, R. (2015). Effect of milled electrical cable waste on mechanical properties of concrete. Journal of Civil Engineering and Management, 21(3), 300–307. doi:10.3846/13923730.2015.1005019
  • Gupta, T., Chaudhary, S., & Sharma, R., K. (2014). Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73, 562–574. doi:10.1016/j.conbuildmat.2014.09.102
  • IS:460 (1962). Indian standard specification for test sieves.
  • Jamil, M., Khan, M. N. N., Karim, M. R., Kaish, A. B. M. A., & Zain, M. F. M. (2016). Physical and chemical contributions of Rice Husk Ash on the properties of mortar. Construction and Building Materials, 128, 185–198. doi:10.1016/j.conbuildmat.2016.10.029
  • Kaya, A., & Kar, F. (2016). Properties of concrete containing waste expanded polystyrene and natural resin. Construction and Building Materials, 105, 572–578. doi:10.1016/j.conbuildmat.2015.12.177
  • Kim, H. K., Jeon, J. H., & Lee, H. K. (2012). Flow, water absorption, and mechanical characteristics of normal and high-strength mortar incorporating fine bottom ash aggregates. Construction and Building Materials, 6, 249–256. doi:10.1016/j.conbuildmat.2011.06.019
  • Kondraivendhan, B., & Bhattacharjee, B. (2015). Flow behavior and strength for fly ash blended cement paste and mortar. International Journal of Sustainable Built Environment, 4(2), 270–277. doi:10.1016/j.ijsbe.2015.09.001
  • Lee, H., Hanif, A., Usman, M., Sim, J., & Oh, H. (2018). Performance evaluation of concrete incorporating glass powder and glass sludge wastes as supplementary cementing material. Journal of Cleaner Production, 170, 683–693. doi:10.1016/j.jclepro.2017.09.133
  • Okeye, F. N., Durgaprasad, J., & Singh, N. B. (2015). Mechanical properties of alkali activated fly ash/kaolin based geopolymer concrete. Construction and Building Materials, 98, 685–691. doi:10.1016/j.conb.uildmat.2015.08.009
  • Pedro, D., de Brito, J., & Evangelista, L. (2017). Mechanical characterization of high performance concrete prepared with recycled aggregate and silica fume from precast industry. Journal of Cleaner Production, 164, 939–949. doi:10.1016/j.jclepro.2017.06.249
  • Penacho, P., Brito, J. D., & Rosario Veiga, M. (2014). Physico-mechanical and performance characterization of mortars incorporating fine glass waste aggregate. Cement and Concrete Composites, 50, 47–59. doi:10.1016/j.cemconcomp.2014.02.007
  • Pliya, P., & Cree, D. (2015). Limestone derived eggshell powder as a replacement in Portland cement mortar. Construction and Building Materials, 95, 1–9. doi:10.1016/j.conbuildmat.2015.07.103
  • Priyadharshini, P., Ramamurthy, K., & Robinson, R. G. (2017). Excavated soil waste as fine aggregate in fly ash based geopolymer mortar. Applied Clay Science, 146, 81–91. doi:10.1016/j.clay.2017.05.038
  • Qin, L., Gao, X., & Chen, T. (2018). Recycling of raw rice husk to manufacture magnesium oxysulfate cement based lightweight building materials. Journal of Cleaner Production, 191, 220–232. doi:10.1016/j.jclepro.2018.04.238
  • Ramirez-Arreola, D. E., Sedano-de la Rosa, C., Haro-Mares, N. B., Ramirez-Moran, J. A., Pérez-Fonseca, A. A., & Robledo-Ortiz, J. R. (2015). Compressive strength study of cement mortars lightened with foamed HDPE nano composites. Materials & Design, 47, 119–124. doi:10.1016/j.matdes.2015.02.013
  • Sales, A., & Araujo Lima, S. (2010). Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Management, 30(6), 1114–1122. doi:10.1016/j.wasman.2010.01.026
  • San-Antonio-Gonzalez, A., Del Rio Merino, M., Vinas Arrebola, C., & Villoria-Saez, P. (2015). Lightweight material made with gypsum and extruded polystyrene waste with enhanced thermal behavior. Construction and Building Materials, 93, 57–63. doi:10.1016/j.conbuildmat.2015.05.040
  • Schiavoni, S., Alessandro, F. D., Bianchi, F., & Asdrubali, F. (2016). Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, 62, 988–1011. doi:10.1016/j.rser.2016.05.045
  • Singh, S. B., Munjal, P., & Thammishetti, N. (2015). Role of water/cement ratio on strength development of cement mortar. Journal of Building Engineering, 4, 94–100. doi:10.1016/j.jobe.2015.09.003
  • Sun, D., & Wang, L. (2015). Utilization of paraffin/expanded perlite materials to improve mechanical and thermal properties of cement mortar. Construction and Building Materials, 101, 791–796. doi:10.1016/j.conbuildmat.2015.10.123
  • TS EN 1015-3. (1999). Methods of test for mortar for masonry. Determination of consistence of fresh mortar by flow table.
  • Unal, O., Uygunoglu, T., & Yildiz, A. (2007). Investigation of properties of low-strength lightweight concrete for thermal insulation. Building and Environment, 42, 587–590. doi:10.1016/j.buildenv.2005.09.024
  • Vegas, I., Gaitero, J. J., Urreta, J., García, R., & Frías, M. (2014). Aging and durability of ternary cements containing fly ash and activated paper sludge. Construction and Building Materials, 52, 253–260. doi:10.1016/j.conbuildmat.2013.10.070
  • Xue, J., & Shinozuka, M. (2013). Rubberized concrete: A green structural material with enhanced energy-dissipation capability. Construction and Building Materials, 42, 196–204. doi:10.1016/j.conbuildmat.2013.01.005
  • Yan, S., & Sagoe-Crentsil, K. (2012). Properties of wastepaper sludge in geopolymer mortars for masonry applications. Journal of Environmental Management, 112, 27–32. doi:10.1016/j.jenvman.2012.07.008
  • Yesilata, B., Bulut, H., & Turgut, P. (2011). Experimental study on thermal behavior of a building structure using rubberized exterior-walls. Energy and Buildings, 43(2–3), 393–399. doi:10.1016/j.enbuild.2010.09.031
  • Yun, T. S., Jeong, Y. J., Han, T.-S., & Youm, K.-S. (2013). Evaluation of thermal conductivity for thermally insulated concretes. Energy and Buildings, 61, 125–132. doi:10.1016/j.enbuild.2013.01.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.