208
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Experimental investigation on the mechanical properties of early-age concrete after heating up to 550 °C

, , , &
Pages 1364-1378 | Received 06 Aug 2017, Accepted 30 Jan 2019, Published online: 23 Mar 2019

References

  • Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 42(8), 516–522. doi:10.1016/j.firesaf.2007.01.003
  • Aydm, S., & Baradan, B. (2007). Effect of pumice and fly ash in corporation on high temperature resistance of cement based mortars. Cement and Concrete Research, 37(6), 988–995. doi:10.1016/j.cemconres.2007.02.005
  • Bamonte, P., & Gambarova, P. G. (2016). High-temperature behavior of SCC in compression: comparative study on recent experimental campaigns. Journal of Materials in Civil Engineering, 28(3). ISSN: 0899-1561/04015141(10). doi:10.1061/(ASCE)MT.1943-5533.0001378
  • Chan, Y. N., Peng, G. F., & Anson, M. (1999). Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement and Concrete Composites, 21(1), 23–27. doi:10.1016/S0958-9465(98)00034-1
  • Chang, Y. F., Chen, Y. H., & Sheu, M. S. (2006). Residual stress-strain relationship for concrete after exposure to high temperatures. Cement and Concrete Research, 36(10), 1999–2005. doi:10.1016/j.cemconres.2006.05.029
  • Chen, B., Li, C. L., & Chen, L. Z. (2009). Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Safety Journal, 44(7), 997–1002. doi:10.1016/j.firesaf.2009.06.007
  • Düğenci, O., Haktanir, T., & Altun, F. (2015). Experimental research for the effect of high temperature on the mechanical properties of steel fiber-reinforced concrete. Construction and Building Materials, 75, 82–88. doi:10.1016/j.conbuildmat.2014.11.005
  • Felicetti, R., E., & Gambarova, P. G. (1998). Effects of high temperature on the residual compressive strength of high-strength siliceous concretes. ACI-Materials Journal, 95(4), 395–406.
  • Guo, Z. H., & Li, W. (1993). Deformation testing and constitutive relationship of concrete under different stress-temperature paths. China Civil Engineering Journal, 26(5), 58–69.
  • Hertz, K. D. (2005). Concrete strength for fire safety design. Magazine of Concrete Research, 57(8), 445–453. doi:10.1680/macr.2005.57.8.445
  • Husem, M. (2006). The effects of high temperature on compressive and flexural strengths of ordinary and high-perforce concrete. Fire Safety Journal, 4(1), 155–163. doi:10.1016/j.firesaf.2005.12.002
  • Hossain, K. M. A. (2006). High strength blended cement concrete incorporating volcanic ash: performance at high temperatures. Cement and Concrete Composites, 28(6), 535–545.
  • Khoury, G. A., Majorana, C. E., Pesavento, F., & Schrefler, B. A. (2002). Modelling of Heated Concrete. Magazine of Concrete Research, 54(2), 77–101. doi:10.1680/macr.2002.54.2.77
  • Kowalski, R. (2007). The effects of the cooling rate on the residual properties of heated-up concrete. Structural Concrete, 8(1), 11–15. doi:10.1680/stco.2007.8.1.11
  • Kim, J., Lee, G. P., & Moon, D. Y. (2015). Evaluation of mechanical properties of steel-fibre-reinforced concrete exposed to high temperatures by double-punch test. Construction and Building Materials, 79, 182–191. doi:10.1016/j.conbuildmat.2015.01.042
  • Li, Q., Liu, L., Huang, Z., & Yuan, G. (2017). Residual compressive strength of cement-based grouting material with early ages after fire. Construction and Building Materials, 138(5), 316–325. doi:10.1016/j.conbuildmat.2017.02.025
  • Li, Q., Li, Z., & Yuan, G. (2012). Effects of elevated temperatures on properties of concrete containing ground granulated blast furnace slag as cementitious material. Construction and Building Materials, 35(10), 687–692. doi:10.1016/j.conbuildmat.2012.04.103
  • Li, W., & Guo, Z. H. (1993). Experiment investigation of strength and deformation of concrete at elevated temperature. Journal of Building Structures, 14(1), 8–16.
  • Liu, L. X., Long, L. V., & Liu, Z. (2005). Investigation on the mechanical behavior of Concrete at and after elevated temperature. Building Science, 21(3), 16–20.
  • Li, N. B., Shi, X. D., & Xiao, M. H. (2007). Experimental investigation on compressive strength decaying behaviors of concrete after elevated temperature. Building Science, 23, 58–61.
  • Mendes, A., Sanjayan, J. G., & Collins, F. (2011). Effects of slag and cooling method on the progressive deterioration of concrete after exposure to elevated temperatures as in a fire event. Materials and Structures, 44(3), 709–718. doi:10.1617/s11527-010-9660-2
  • Niu, Y. Z., Tu, C. L., Liang, R. Y., Zhang, S. W. (1995). Modeling of thermo-mechanical damage of early-age concrete. Journal of Engineering Mechanics, 121(4), 717–726. doi:10.1061/(ASCE)0733-9445(1995)121:4(717)
  • Nguyen, D. H., Dao, V. T. N., & Lura, P. (2017). Tensile properties of concrete at very early ages. Construction and Building Materials, 134, 563–573. doi:10.1016/j.conbuildmat.2016.12.169
  • Ozawa, M., & Morimoto, H. (2014). Effects of various fibres on high-temperature spalling in high-performance concrete. Construction and Building Materials, 71(2), 83–92. doi:10.1016/j.conbuildmat.2014.07.068
  • Pan, Y., Prado, A., Porras, R., Hafez, O., & Bolander, J. (2017). Lattice modeling of early-age behavior of structural concrete. Materials, 10(3), 231.
  • Scoones, K. (1992). Fires during construction. Fire Prevention, 248(4), 19–22.
  • Shen, D. J., Shi, X., Zhu, S., Duan, X., Zhang, J. (2016). Relationship between tensile Young’s modulus and strength of fly ash high strength concrete at early age. Construction and Building Materials, 123, 317–326.
  • Wei, H. D., & Zhang, Z. (2010). Study of countermeasure on fire extinguishing of super high-rise building through CCTV conflagration. Fire Science & Technology, 29(7), 606–612.
  • Xu, Y., Wong, Y. L., Poon, C. S., Anson, M. (2003). Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures. Cement and Concrete Research, 33(12), 2009–2016. doi:10.1016/S0008-8846(03)00216-3
  • Xotta, G., Mazzucco, G., Salomoni, V. A., Majorana, C. E., William, K. J.. (2015). Composite behavior of concrete materials under high temperatures. International Journal of Solids and Structures, 64-65, 86–99. doi:10.1016/j.ijsolstr.2015.03.016
  • Yoon, M., Kim, G., Choe, G. C., Lee, Y., Lee, T. (2015). Effect of coarse aggregate type and loading level on the high temperature properties of concrete. Construction and Building Materials, 78(78), 26–33. doi:10.1016/j.conbuildmat.2014.12.096
  • Zhang, L. G., Dong, X. M., & Xu, J. (2007). Reinforcing and Retrofitting of an Office Building in Wuhan Optical Valley after Fire Accident. Building Structure, 37(9), 132–133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.