231
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Self-compacting concrete (SCC) behaviour incorporating limestone fines as cement and sand replacement

, &
Pages 1852-1873 | Received 27 May 2018, Accepted 09 Apr 2019, Published online: 26 Apr 2019

References

  • Aarre, T., & Domone, P. (2003). Reference concretes for evaluation of test methods for SCC. Proceedings of 3rd RILEM International Symposium on self-compacting concrete, Reykjavik, Iceland (pp. 495–505).
  • Algin, H. M., & Turgut, P. (2008). Cotton and limestone powder wastes as brick material. Construction and Building Materials, 22(6), 1074–1080. doi:10.1016/j.conbuildmat.2007.03.006
  • ASTM C1202-94. (1994). Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration', American Society for Testing and Materials, 620–625
  • Benabed, B., Kadri, E.-H., Azzouz, L., & Kenai, S. (2012). Properties of self-compacting mortar made with various types of sand. Cement and Concrete Composites, 34(10), 1167–1173. doi:10.1016/j.cemconcomp.2012.07.007
  • Benachour, Y., Davy, C. A., Skoczylas, F., & Houari, H. (2008). Effect of a high calcite filler addition upon microstructural, mechanical, shrinkage and transport properties of a mortar. Cement and Concrete Research, 38(6), 727–736. doi:10.1016/j.cemconres.2008.02.007
  • Bentz, D. P., Ferraris, C. F., Jones, S. Z., Lootens, D., & Zunino, F. (2017). Limestone and silica powder replacements for cement: Early-age performance. Cement and Concrete Composites, 78, 43–56. doi:10.1016/j.cemconcomp.2017.01.001
  • Boel, V., Audenaert, K., & De Schutter, G. (2008). Gas permeability and capillary porosity of self-compacting concrete. Materials and Structures, 41(7), 1283–1290. doi:10.1617/s11527-007-9326-x
  • Bonavetti, V., Donza, H., Rahhal, V., & Irassar, E. (2000). Influence of initial curing on the properties of concrete containing limestone blended cement. Cement and Concrete Research, 30(5), 703–708. doi:10.1016/S0008-8846(00)00217-9
  • Bosiljkov, V. B. (2003). SCC mixes with poorly graded aggregate and high volume of limestone filler. Cement and Concrete Research, 33(9), 1279–1286. doi:10.1016/S0008-8846(03)00013-9
  • British Standard, EN 12390-2. (2009). Testing hardened concrete. Making and curing specimens for strength tests.
  • BS EN 12390-3. (2009). Testing hardened concrete. Compressive Strength of Test Specimens, 19.
  • BS EN 12390-1. (2012). Testing hardened concrete. Shape, dimensions and other requirements for specimens and moulds. British Standards Institute, London.
  • BS EN 13057. (2002). Determination of resistance of capillary absorption. British Standards Institution 20(2002), 685.
  • Chen, J., Kwan, A., & Jiang, Y. (2014). Adding limestone fines as cement paste replacement to reduce water permeability and sorptivity of concrete. Construction and Building Materials, 56, 87–93. doi:10.1016/j.conbuildmat.2014.01.066
  • Chopin, D., de Larrard, F., & Cazacliu, B. (2004). Why do HPC and SCC require a longer mixing time? Cement and Concrete Research, 34(12), 2237–2243. doi:10.1016/j.cemconres.2004.02.012
  • Da Silva, P., & De Brito, J. (2015). Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler. Construction and Building Materials, 86, 101–112. doi:10.1016/j.conbuildmat.2015.03.110
  • EFNARC, S. (2002). Guidelines for self-compacting concrete. EFNARC, UK (www.efnarc.org), 1–32
  • El Mir, A., & Nehme, S. (2015). Porosity of self-compacting concrete. Procedia Engineering, 123, 145–152.
  • Felekoglu, B. (2007). Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resources, Conservation and Recycling, 51(4), 770–791. doi:10.1016/j.resconrec.2006.12.004
  • Gesoğlu, M., Güneyisi, E., Kocabağ, M. E., Bayram, V., & Mermerdaş, K. (2012). Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Construction and Building Materials, 37, 160–170. doi:10.1016/j.conbuildmat.2012.07.092
  • Ghrici, M., Kenai, S., & Said-Mansour, M. (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cement and Concrete Composites, 29(7), 542–549. doi:10.1016/j.cemconcomp.2007.04.009
  • Hallal, A., Kadri, E., Ezziane, K., Kadri, A., & Khelafi, H. (2010). Combined effect of mineral admixtures with superplasticizers on the fluidity of the blended cement paste. Construction and Building Materials, 24(8), 1418–1423. doi:10.1016/j.conbuildmat.2010.01.015
  • Kanellopoulos, A., Petrou, M. F., & Ioannou, I. (2012). Durability performance of self-compacting concrete. Construction and Building Materials, 37, 320–332. doi:10.1016/j.conbuildmat.2012.07.049
  • Kenai, S., Soboyejo, W., & Soboyejo, A. (2004). Some engineering properties of limestone concrete. Materials and Manufacturing Processes, 19(5), 949–961. doi:10.1081/AMP-200030668
  • Kollek, J. (1989). The determination of the permeability of concrete to oxygen by the Cembureau method—A recommendation. Materials and Structures, 22(3), 225–230. doi:10.1007/BF02472192
  • Leemann, A., Münch, B., Gasser, P., & Holzer, L. (2006). Influence of compaction on the interfacial transition zone and the permeability of concrete. Cement and Concrete Research, 36(8), 1425–1433. doi:10.1016/j.cemconres.2006.02.010
  • Lollini, F., Redaelli, E., & Bertolini, L. (2014). Effects of portland cement replacement with limestone on the properties of hardened concrete. Cement and Concrete Composites, 46, 32–40. doi:10.1016/j.cemconcomp.2013.10.016
  • Menadi, B., Kenai, S., Khatib, J., & Aït-Mokhtar, A. (2009). Strength and durability of concrete incorporating crushed limestone sand. Construction and Building Materials, 23(2), 625–633. doi:10.1016/j.conbuildmat.2008.02.005
  • Mohammed, M. K., Dawson, A. R., & Thom, N. H. (2014). Macro/micro-pore structure characteristics and the chloride penetration of self-compacting concrete incorporating different types of filler and mineral admixture. Construction and Building Materials, 72, 83–93. doi:10.1016/j.conbuildmat.2014.08.070
  • Moon, G. D., Oh, S., Jung, S. H., & Choi, Y. C. (2017). Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete. Construction and Building Materials, 135, 129–136. doi:10.1016/j.conbuildmat.2016.12.189
  • Mostofinejad, D., Nosouhian, F., & Nazari-Monfared, H. (2016). Influence of magnesium sulphate concentration on durability of concrete containing micro-silica, slag and limestone powder using durability index. Construction and Building Materials, 117, 107–120. doi:10.1016/j.conbuildmat.2016.04.091
  • Muciaccia, G., Cattaneo, S., Rosati, G., & Cangiano, S. (2015). Properties of limestone self-compacting concrete at fresh and hardened state. European Journal of Environmental and Civil Engineering, 19(5), 598–613. doi:10.1080/19648189.2014.960144
  • Nazari, A., & Riahi, S. (2011). The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete. Composites Part B: Engineering, 42(3), 570–578. doi:10.1016/j.compositesb.2010.09.025
  • Nehdi, M., Mindess, S., & Aıtcin, P.-C. (1998). Rheology of high-performance concrete: effect of ultrafine particles. Cement and Concrete Research, 28(5), 687–697. doi:10.1016/S0008-8846(98)00022-2
  • Neville, A. (1996). Properties of concrete (4th and final edition standards). Upper Saddle River, NJ: Prentice Hall Pearson.
  • Okamura, H., & Ozawa, K. (1995). Mix design for self-compacting concrete. Concrete Library of JSCE, no. 25, pp. 107–120.
  • Ollivier, J. (1997). AFC-AFREM: Détermination de la masse volumique apparente et de la porosité accessible à l’eau. Méthodes recommandées pour la mesure des grandeurs associées à la durabilité. Compte rendu des Journées Techniques Durabilité des bétons. LMDC–INSA Toulouse, France, 121–124.
  • Ramezanianpour, A. A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M., & Moodi, F. (2009). Influence of various amounts of limestone powder on performance of portland limestone cement concretes. Cement and Concrete Composites, 31(10), 715–720. doi:10.1016/j.cemconcomp.2009.08.003
  • Safiddine, S., Debieb, F., Kadri, E.-H., Menadi, B., & Soualhi, H. (2017). Effect of crushed sand and limestone crushed sand dust on the rheology of cement mortar. Applied Rheology, 27(1). doi:10.3933/APPLRHEOL-27-14490
  • Shafigh, P., Nomeli, M. A., Alengaram, U. J., Mahmud, H. B., & Jumaat, M. Z. (2016). Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. Journal of Cleaner Production, 135, 148–157. doi:10.1016/j.jclepro.2016.06.082
  • Shi, H-S., Xu, B-W., & Zhou, X-C. (2009). Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Construction and Building Materials, 23(5), 1980–1985. doi:10.1016/j.conbuildmat.2008.08.021
  • Silva, P., & de Brito, J. (2017). Experimental study of the mechanical properties and shrinkage of self-compacting concrete with binary and ternary mixes of fly ash and limestone filler. European Journal of Environmental and Civil Engineering, 21(4), 430–453. doi:10.1080/19648189.2015.1131200
  • Sun, J., & Chen, Z. (2018). Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technology, 338, 725–733. doi:10.1016/j.powtec.2018.07.041
  • Tragardh, J. (1999). Microstructural features and related properties of self-compacting concrete self-compacting concrete. Proceedings of the First International RILEM Symposium, Stockholm (pp. 175–186).
  • Tsivilis, S., Tsantilas, J., Kakali, G., Chaniotakis, E., & Sakellariou, A. (2003). The permeability of Portland limestone cement concrete. Cement and Concrete Research, 33(9), 1465–1471. doi:10.1016/S0008-8846(03)00092-9
  • Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E., & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Construction and Building Materials, 28(1), 122–128. doi:10.1016/j.conbuildmat.2011.07.029
  • von Beton, P. (1991). Empfehlungen und Hinweise als Ergänzung zu DIN 1048. Deutscher Ausschauss für Stahlbeton, Berlin.
  • Zhang, J., Bian, F., Zhang, Y., Fang, Z., Fu, C., & Guo, J. (2018). Effect of pore structures on gas permeability and chloride diffusivity of concrete. Construction and Building Materials, 163, 402–413. doi:10.1016/j.conbuildmat.2017.12.111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.