196
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effect of water content on hydraulic properties of bentonite–geomaterials mixture

, , , , &
Pages 2370-2395 | Received 15 Nov 2018, Accepted 02 Jun 2019, Published online: 27 Jun 2019

References

  • Abeele, W. V., Wheeler, M. L., & Burton, B. W. (1981). Geohydrology of Bandelier tuff. Los Alamos National Laboratory, USA, Report LA-8962-MS, p. 55. doi:https://doi.org/10.2172/5575989
  • AFNOR. (1993). NF P 94-051: Détermination des limites d’Atterberg—Limite de liquidité à la coupelle—Limite de plasticité au rouleau. Paris, France.
  • AFNOR. (1996). NF P 94-048: Sols: reconnaissance et essais – Détermination de la teneur en carbonate – Méthode du calcimètre. Paris, France.
  • AFNOR. (1997). XP P94-090-1: Sols: reconnaissance et essais – Essai oedométrique – Partie 1: essai de compressibilité sur matériaux fins quasi saturés avec chargement par paliers. Paris, France.
  • Ajdari, M., Habibagahi, G., & Masrour, F. (2013). The role of suction and degree of saturation on the hydro-mechanical response of a dual porosity silt–bentonite mixture. Applied Clay Science, 83–84, 83–90. doi:https://doi.org/10.1016/j.clay.2013.08.020
  • Alston, C., Daniel, D. E., & Devroy, D. J. (1997). Design and construction of sand Bentonite liner for effluent treatment lagoon, Marathon, Ontario. Canadian Geotechnical Journal, 34(6), 841–852. doi:https://doi.org/10.1139/t97-054
  • Anlauf, R. (2014). Using the EXCEL solver function to estimate the van Genuchten parameters from measured pF/water content values. Excel spreadsheed. Retrieved from www.al.hs-osnabrueck.de/anlauf.html
  • ASTM. (2007). D4972-01: Standard test method for pH of soils. West Conshohocken, PA: ASTM International.
  • ASTM. (1995). D5298-16: Standard test method for measurement of soil potential (suction) using filter paper. West Conshohocken, PA: ASTM International.
  • Biarez, J., Fleureau, J. M., & Zerhouni, F. (1989). Compressibility of clayey soils between 10 and 108 Pa. Proceedings of the Twelfth International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil (Vol. 1, pp. 15–16).
  • Chapuis, R. P. (2002). The 2000 R.M. Hardy Lecture: Full-scale hydraulic performance of soil–bentonite and compacted clay liners. Canadian Geotechnical Journal, 39(2), 417–439. doi:https://doi.org/10.1139/t01-092
  • Chen, J., Li, Z., Zhao, X., & Li, H. (2011). Experimental study of bentonite–soil mixtures as antiseepage materials of constructed wetlands. Journal of Environmental Science and Health Part A, 46(7), 729–735. doi:https://doi.org/10.1080/10934529.2011.571585
  • Cui, S. L., & Si, D. D. (2014). Experimental research of swelling behaviors with initial water content and matric suction of bentonite–sand mixtures. Geosystem Engineering, 17(6), 317–324. doi:https://doi.org/10.1080/12269328.2014.994788
  • Cui, Y. J., Tang, A. M., Loiseau, C., & Delage, P. (2008). Determining the unsaturated hydraulic conductivity of a compacted sand–bentonite mixture under constant-volume and free-swell conditions. Physics and Chemistry of the Earth, Parts A/B/C, 33, 462–471. doi:https://doi.org/10.1016/j.pce.2008.10.017
  • Cuisinier, O., & Masrouri, F. (2005). Hydromechanical behaviour of a compacted swelling soil over a wide suction range. Engineering Geology, 81(3), 204–212. doi:https://doi.org/10.1016/j.enggeo.2005.06.008
  • D’Appolonia, D. J. (1980). Soil-bentonite slurry trench cutoffs. Journal of Geotechnical and Geoenvironmental Engineering, 106(GT4), 399–417. Retrieved from http://worldcat.org/oclc/3519342
  • Dafalla, M., Shaker, A. A., Elkady, T., Al-Shamrani, M., & Dhowian, A. (2015). Effects of confining pressure and effective stress on hydraulic conductivity of sand–clay mixtures. Arabian Journal of Geosciences, 8(11), 9993–10001. doi:https://doi.org/10.1007/s12517-015-1925-1
  • Delage, P., Howat, M. D., & Cui, Y. J. (1998). The relationship between suction and the swelling properties in a heavily compacted swelling clay. Engineering Geology, 50(1–2), 31–48. doi:https://doi.org/10.1016/S0013-7952(97)00083-5
  • Demdoum, A., Gueddouda, M. K., & Goual, I. (2017). Effect of water and leachate on hydraulic behavior of compacted bentonite, calcareous sand and tuff mixtures for use as landfill liners. Geotechnical and Geological Engineering, 35(6), 2677–2696. doi:https://doi.org/10.1007/s10706-017-0270-4
  • Demdoum, A., Gueddouda, M. K., Goual, I., & Berkak, H. (2018). Effect of liquid type on the hydraulic characteristic of compacted local geomaterials for use as hydraulic barriers. International symposium on materials and sustainable development (Vol. 2017, pp. 451–464). Cham, Switzerland: Springer. doi:https://doi.org/10.1007/978-3-319-89707-3_51
  • Duong, T. V., Tang, A. M., Cui, Y. J., Calon, N., Robinet, A., Dupla, J.-C., & Canou, J. (2012). Unsaturated hydraulic properties of fine particles of fouled ballast layer from an ancient railway track beds. In Unsaturated soils: Research and applications (pp. 283–289). Berlin, Heidelberg: Springer. doi:https://doi.org/10.1007/978-3-642-31343-1_36
  • Fityus, S., & Buzzi, O. (2009). The place of expansive clays in the framework of unsaturated soil mechanics. Applied Clay Science, 43(2), 150–155. doi:https://doi.org/10.1016/j.clay.2008.08.005
  • Fleureau, J. M., Kheirbek-Saoud, S., Soemitro, R., & Taibi, S. (1993). Behavior of clayey soils on dryingwetting paths. Canadian Geotechnical Journal, 30(2), 287–296. doi:https://doi.org/10.1139/t93-024
  • Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. New York, NY: John Wiley & Sons, Inc.
  • Fredlund, D. G., Xing, A., & Huang, S. (1994). Predicting of the permeability function for unsaturated soil using the soil–water characteristic curve. Canadian Geotechnical Journal, 31(4), 533–546. doi:https://doi.org/10.1139/t94-062
  • Gueddouda, M. K., Goual, I., Benabed, B., Taibib, S., & Aboubekr, N. (2016). Hydraulic properties of dune sand–bentonite mixtures of watertight barriers for hazardous waste facilities. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 541–550. doi:https://doi.org/10.1016/j.jrmge.2016.02.003
  • Hamidi, A., Habibagahi, G., & Ajdari, M. (2013). A modified osmotic direct shear apparatus for testing unsaturated soils. Geotechnical Testing Journal, 36(1), 1–10. doi:https://doi.org/10.1520/GTJ20120092
  • Haug, M. D., & Wong, L. C. (1992). Impact of molding water contention hydraulic conductivity of compacted sand–bentonite. Canadian Geotechnical Journal, 29(2), 253–262. doi:https://doi.org/10.1139/t92-029
  • Iravaniana, A. (2015). Hydro-mechanical properties of compacted sand–bentonite mixtures enhanced with cement (Ph.D. thesis). Eastern Mediterranean University (EMU), Cyprus, Turkish.
  • Kaufhold, S., Dohrmann, H., Koch, D., & Houben, G. (2008). The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56(3), 338–343. doi:https://doi.org/10.1346/CCMN.2008.0560304
  • Lachgueur, K., Taibi, S., & Abou-Bekr, N. (2010). Comportement hydrique d'une argile non saturée: Application au noyau du barrage Boughrara. European Journal of Environmental and Civil Engineering, 14(3), 329–360. doi:https://doi.org/10.1080/19648189.2010.9693224
  • Lade, P. V. (2016). Triaxial testing of soils. West Sussex, UK: John Wiley & Sons.
  • Lade, P. V., Liggio, C. D., & Yamamuro, J. A. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21(4), 336–347. doi:https://doi.org/10.1520/GTJ11373J
  • Loiseau, C. (2001). Transferts d’eau et couplages hydromécaniques dans les barrières ouvragées (Ph.D. thesis). École Nationale des Ponts et Chaussées, Paris, France.
  • Lorenzetti, R. J., Bartelt-Hunt, S. L., Burns, S. E., & Smith, J. A. (2005). Hydraulic conductivities and effective diffusion coefficients of geosynthetic clay liners with organobentonite amendments. Geotextiles and Geomembranes, 23(5), 385–400. doi:https://doi.org/10.1016/j.geotexmem.2005.02.002
  • Manca, D. (2015). Hydro-chemo-mechanical characterisation of sand/bentonite mixtures, with a focus on the water and gas transport properties (Ph.D. thesis). École polytechnique fédérale de Lausanne, Swiss.
  • Montañez, J. E. C. (2002). Suction and volume changes of compacted sand-bentonite mixtures (Ph.D. thesis). University of London, London, United Kingdom, UK.
  • Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522. doi:https://doi.org/10.1029/WR012i003p00513
  • Mualem, Y., & Friedman, S. P. (1991). Theoretical prediction of electrical conductivity in saturated and unsaturated soil. Water Resources Research, 27, 2271–2777. doi:https://doi.org/10.1029/91WR01095
  • Nowamooz, H., & Masrouri, F. (2009). Density-dependent hydromechanical behavior of a compacted expansive soil: Experimental andanalytical aspects. Engineering Geology, 106(3–4), 105–115. doi:https://doi.org/10.1016/j.enggeo.2009.03.010
  • Pansu, M., & Gautheyrou, J. (2007). Handbook of soil analysis: Mineralogical, organic and inorganic methods. New York, NY: Springer Science & Business Media.
  • Rowe, K. R. (2012). Third Indian Geotechnical Society: Ferroco Terzaghi oration design and construction of barrier systems to minimize environmental impacts due to municipal solid waste leachate and gas. Indian Geotechnical Journal, 42(4), 223–256. doi:https://doi.org/10.1007/s40098-012-0024-4
  • Sällfors, G., & Öberg-Högsta, A. L. (2002). Determination of hydraulic conductivity of sand–bentonite mixtures for engineering purposes. Geotechnical and Geological Engineering, 20(1), 65–80. doi:https://doi.org/10.1023/A:1013857823676
  • Sayad, G. C. (2003). Écoulement dans les milieux poreux peu perméables saturés et non saturés (Ph.D. thesis). Université de Havre, Havre, France.
  • Stoicescu, J., Haug, M., & Fredlund, D. (1996). The soil–water characteristics and pore size distribution of a sand bentonite mixture. In Proceedings of the 49th Canadian Geotechnical Conference. St. John's Newfoundland, Canada (pp. 721–728).
  • Stoicescu, J., Haug, M., & Fredlund, D. (1998). The soil water characteristics of sand–entonite mixtures used for liners and covers. In Proceedings of the 2nd International Conference on Unsaturated Soils (UNSAT'98), Beijing, China (pp. 27–30).
  • Taibi, S., Bicalho, K. V., Sayad-Gaidi, C., & Fleureau, J. M. (2009). Measurements of unsaturated hydraulic conductivity functions of two fine-grained materials. Soils and Foundations, 49(2), 181–191. doi:https://doi.org/10.3208/sandf.49.181
  • Tang, G. X. (1999). Suction characteristics and elastic-plastic modelling of unsaturated sand-bentonite mixture (Ph.D. thesis). University of Manitoba, Manitoba, Canada.
  • Tang, G. X., Graham, J., & Wan, A. (1997). Measuring total suctions by psychrometers in traixial tests. Proceedings of the international conference on soil mechanics and foundation engineering-international society for soil mechanics and foundation engineering, AA BALKEMA (Vol. 1, pp. 213–216).
  • Tuller, M., & Or, D. (2004). Retention of water in soil and the soil water characteristic curve. Encyclopedia of Soils in the Environment, 4, 278–289.
  • Van Genuchten, R. (1978). Calculating the unsaturated hydraulic conductivity with a new, closed-form analytical model. Water Resources Program, Department of Civil Engineering, Princeton University, Princeton, NJ, Research Report 78-WR-08.
  • Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. doi:https://doi.org/10.2136/sssaj1980.03615995004400050002x
  • Vanapalli, S. K., Fredlund, D. G., & Pufahl, D. E. (1999). The influence of soil structure and stress history on the soil–water characteristics of a compacted till. Géotechnique, 49(2), 143–159. doi:https://doi.org/10.1680/geot.1999.49.2.143
  • Vicol, T. (1990). Comportement hydraulique et mécanique d’un sol fin non saturé, Application à la modélisation (Ph.D. thesis). École nationale des Ponts et Chaussées, Paris, France.
  • Wu, J. Y., & Khera, R. P. (1990). Properties of a treated-bentonite/sand mix in contaminant environment. physio-chemical aspects of soil and related materials. In K. B. Hoddinott & R. O. Lamb (Eds.), ASTM, STP 1095 (pp. 47–59). West Conshohocken, PA: American Society for Testing and Materials. doi:https://doi.org/10.1520/STP23546S
  • Ye, W. M., Borrell, N. C., Zhu, J. Y., Chen, B., & Chen, Y. G. (2014). Advances on the investigation of the hydraulic behavior of compacted GMZ bentonite. Engineering Geology, 169, 41–49. doi:https://doi.org/10.1016/j.enggeo.2013.11.003
  • Zhang, M., Zhang, H., Zhou, L., & Jia, L. (2013). Temperature effects on unsaturated hydraulic property of bentonite–sand buffer backfilling mixtures. Journal of Wuhan University of Technology-Materials Science Edition, 28(3), 487–493. doi:https://doi.org/10.1007/s11595-013-0718-1
  • Zhang, M., Zhang, H., Zhou, L., Wang, B., & Wang, S. (2014). Hydro-mechanical analysis of GMZ bentonite–sand mixtures in the water infiltration process as the buffer/backfill mixture in an engineered nuclear barrier. Applied Clay Science, 97–98, 115–124. doi:https://doi.org/10.1016/j.clay.2014.05.016
  • Zhuang, J., Nakayama, K., Yu, G. R., & Miyazaki, T. (2001). Predicting unsaturated hydraulique conductivity of soil based on some basic soil properties. Soil and Tillage Research, 59(3–4), 143–154. doi:https://doi.org/10.1016/S0167-1987(01)00160-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.