362
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A coupled elasto-plastic damage model for fine-grained sandstone under triaxial compression and lateral extension loading conditions

, , &
Pages 838-854 | Received 26 Dec 2017, Accepted 12 Oct 2019, Published online: 25 Oct 2019

References

  • Bell, F., & Lindsay, P. (1999). The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa. Engineering Geology, 53(1), 57–81. doi:10.1016/S0013-7952(98)00081-7
  • Cai, M., Kaiser, P. K., Tasaka, Y., Maejima, T., Morioka, H., & Minami, M. (2004). Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. International Journal of Rock Mechanics and Mining Sciences, 41(5), 833–847. doi:10.1016/j.ijrmms.2004.02.001
  • Chen, L., Wang, C. P., Liu, J. F., Liu, J., Wang, J., Jia, Y., & Shao, J. F. (2015). Damage and plastic deformation modeling of beishan granite under compressive stress conditions. Rock Mechanics and Rock Engineering, 48(4), 1623–1633. doi:10.1007/s00603-014-0650-5
  • Fairhurst, C. E., & Hudson, J. A. (1999). Draft ISRM suggested method for the complete stress-strain curve for the intact rock in uniaxial compression. International Journal of Rock Mechanics & Mining Science, 36(3), 281–289.
  • Fan, Y., Lu, W., Zhou, Y., Yan, P., Leng, Z., & Chen, M. (2016). Influence of tunneling methods on the strainburst characteristics during the excavation of deep rock masses. Engineering Geology, 201, 85–95. doi:10.1016/j.enggeo.2015.12.015
  • Haimson, B. (2006). True triaxial stresses and the brittle fracture of rock. Basel: Birkhäuser.
  • Jia, C., Xu, W., Wang, S., Wang, R., & Yu, J. (2018). Experimental analysis and modeling of the mechanical behavior of breccia lava in the dam foundation of the Baihetan Hydropower Project. Bulletin of Engineering Geology & the Environment, 78(4), 2681–2695.
  • Jiang, Q., Zhong, S., Cui, J., Feng, X. T., & Song, L. (2016). Statistical characterization of the mechanical parameters of intact rock under triaxial compression: An experimental proof of the jinping marble. Rock Mechanics & Rock Engineering, 49(12), 4631–4646.
  • Kun, D. U., Xi-Bing, L. I., Di-Yuan, L. I., & Weng, L. (2015). Failure properties of rocks in true triaxial unloading compressive test. Transactions of Nonferrous Metals Society of China, 25(2), 571–581.
  • Lemaitre, J. (1984). How to use damage mechanics. Nuclear Engineering & Design, 80(2), 233–245.
  • Liu, L., Xu, W. Y., Zhao, L. Y., Zhu, Q. Z., & Wang, R. B. (2016). An experimental and numerical investigation of the mechanical behavior of granite gneiss under compression. Rock Mechanics & Rock Engineering, 50(2), 499–506.
  • Liu, Z., & Shao, J. (2017). Strength behavior, creep failure and permeability change of a tight marble under triaxial compression. Rock Mechanics and Rock Engineering, 50(3), 529–541. doi:10.1007/s00603-016-1134-6
  • Liu, Z., Shao, J., Xie, S., Conil, N., & Talandier, J. (2018). Mechanical behavior of claystone in lateral decompression test and thermal effect. Rock Mechanics and Rock Engineering, 52(2), 321–334. doi:10.1007/s00603-018-1573-3
  • Martin, C. D., & Chandler, N. A. (1994). The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 31(6), 643–659.
  • Munoz, H., & Taheri, A. (2017a). Local damage and progressive localisation in porous sandstone during cyclic loading. Rock Mechanics and Rock Engineering, 50(12), 3253–3259. doi:10.1007/s00603-017-1298-8
  • Munoz, H., & Taheri, A. (2017b). Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation. Journal of Rock Mechanics and Geotechnical Engineering, 9(4), 599–610. doi:10.1016/j.jrmge.2017.01.005
  • Munoz, H., Taheri, A., & Chanda, E. (2016). Pre-peak and post-peak rock strain characteristics during uniaxial compression by 3D digital image correlation. Rock Mechanics and Rock Engineering, 49(7), 2541–2554. doi:10.1007/s00603-016-0935-y
  • Parisio, F., Samat, S., & Laloui, L. (2015). Constitutive analysis of shale: A coupled damage plasticity approach. International Journal of Solids and Structures, 75–76, 88–98. doi:10.1016/j.ijsolstr.2015.08.003
  • Pietruszczak, S., Jiang, J., & Mirza, F. A. (1988). An elastoplastic constitutive model for concrete. International Journal of Solids and Structures, 24(7), 705–722. doi:10.1016/0020-7683(88)90018-2
  • Shao, J. F., Zhu, Q. Z., & Su, K. (2003). Modeling of creep in rock materials in terms of material degradation. Computers and Geotechnics, 30(7), 549–555. doi:10.1016/S0266-352X(03)00063-6
  • Sirumbal-Zapata, L. F., Málaga-Chuquitaype, C., & Elghazouli, A. Y. (2018). A three-dimensional plasticity-damage constitutive model for timber under cyclic loads. Computers & Structures, 195, 47–63. doi:10.1016/j.compstruc.2017.09.010
  • Stöffler, D., Hamann, C., & Metzler, K. (2018). Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science, 53(1), 5–49. doi:10.1111/maps.12912
  • Taheri, A., Yfantidis, N., Olivares, C., Connelly, B., & Bastian, T. (2016). Experimental study on degradation of mechanical properties of sandstone under different cyclic loadings. Geotechnical Testing Journal, 39(4), 20150231–20150687. doi:10.1520/GTJ20150231
  • Voyiadjis, G. Z., & Deliktas, B. (2000). A coupled anisotropic damage model for the inelastic response of composite materials. Computer Methods in Applied Mechanics and Engineering, 183(3–4), 159–199. doi:10.1016/S0045-7825(99)00218-2
  • Wang, H. L., Xu, W. Y., & Shao, J. F. (2014). Experimental researches on hydro-mechanical properties of altered rock under confining pressures. Rock Mechanics and Rock Engineering, 47(2), 485–493. doi:10.1007/s00603-013-0439-y
  • Wang, S., Xu, W., Jia, C., & Wang, W. (2017). Mechanical behavior of fine-grained sandstone in triaxial compression and elastoplastic modeling by return mapping algorithms. Bulletin of Engineering Geology & the Environment, 77(4), 1689–1699.
  • Wang, S., Xu, W., Wang, W., & Jia, C. (2018). Experimental and numerical investigations on the mechanical behavior of fine-grained sandstone. International Journal of Geomechanics, 18(2), 04017150.
  • Wang, S., Wang, H., Xu, W., & Qian, W. (2019). Investigation on mechanical behaviour of dacite under loading and unloading conditions. Géotechnique Letters, 1–6.
  • Wen, T., Liu, Y., Yang, C., & Yi, X. (2017). A rock damage constitutive model and damage energy dissipation rate analysis for characterising the crack closure effect. Geomechanics & Geoengineering, 13(1), 54–63.
  • Yang, S. Q., & Jing, H. W. (2013). Evaluation on strength and deformation behavior of red sandstone under simple and complex loading paths. Engineering Geology, 164(393), 1–17. doi:10.1016/j.enggeo.2013.06.010
  • Yang, S.-Q., Jing, H.-W., & Wang, S.-Y. (2012). Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mechanics and Rock Engineering, 45(4), 583–606. doi:10.1007/s00603-011-0208-8
  • Zhang, D., Gamage, R. P., Perera, M., Zhang, C., & Wanniarachchi, W. (2017). Influence of water saturation on the mechanical behaviour of low-permeability reservoir rocks. Energies, 10(2), 236.
  • Zhang, J. C. (2017). Experimental and modelling investigations of the coupled elastoplastic damage of a quasi-brittle rock. Rock Mechanics & Rock Engineering, 51(2), 465–478.
  • Zhang, J. C., Xu, W. Y., Wang, H. L., Wang, R. B., Meng, Q. X., & Du, S. W. (2016). A coupled elastoplastic damage model for brittle rocks and its application in modelling underground excavation. International Journal of Rock Mechanics and Mining Sciences, 84, 130–141. doi:10.1016/j.ijrmms.2015.11.011
  • Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H. A., & Acikalin, S. (2008). Prediction of uniaxial compressive strength of sandstones using petrography-based models. Engineering Geology, 96(3–4), 141–158. doi:10.1016/j.enggeo.2007.10.009
  • Zreid, I., & Kaliske, M. (2016). An implicit gradient formulation for microplane Drucker-Prager plasticity. International Journal of Plasticity, 83, 252–272. doi:10.1016/j.ijplas.2016.04.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.