195
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of in situ soil-atmosphere interaction with a hydro-thermal simulation approach: application to an instrumented site

&
Pages 855-878 | Received 05 Mar 2018, Accepted 13 Oct 2019, Published online: 26 Oct 2019

References

  • Adem, H. H., & Vanapalli, S. K. (2016). Soil-environment interactions modeling for expansive soils. Environmental Geotechnics, 3(3), 178–187.
  • An, N., Hemmati, S., & Cui, Y. J. (2017a). Assessment of the methods for determining net radiation at different time-scales of meteorological variables. Journal of Rock Mechanics and Geotechnical Engineering, 9(2), 1–8.
  • An, N., Hemmati, S., & Cui, Y. J. (2017b). Numerical analysis of soil volumetric water content and temperature variations in an embankment due to soil-atmosphere interaction. Computers and Geotechnics, 83, 40–51.
  • An, N., Hemmati, S., Cui, Y-J., & Tang, C-S. (2018). Numerical investigation of water evaporation from Fontainebleau sand in an environmental chamber. Engineering Geology, 234, 55–64.
  • Berliand, T. A. (1970). Solar radiation and radiation balance data. Leningrad, Saint Petersburg, Russia: Hydrometeorology Publishing House.
  • Blight, G. E. (1997). Interactions between the atmosphere and the Earth. Géotechnique, 47(4), 715–767. doi:10.1680/geot.1997.47.4.713.
  • Brutsaert, W. (1988). Evaporation into the atmosphere. Theory, history, and applications. Boston, MA: D. Reidel Publishing Company, 299 p.
  • Campbell, G. (1985). Soil physics with basic: Transport models for soil plant systems. New York: Elsevier Sci. Publ. Co.
  • Coté, J., & Konrad, J. M. (2005). A generalized thermal conductivity model for soils and construction materials. Can. Geotech. J. 42, 443–458.
  • Cui, Y. J., & Zornberg, J. G. (2008). Water balance and evapotranspiration monitoring in geotechnical and geoenvironmental engineering. Geotechnical and Geological Engineering, 26(6), 783–798.
  • Cui, Y. J., Lu, Y. F., Delage, P., & Riffard, M. (2005). Field simulation of in situ water content and temperature changes due to ground-atmospheric interactions. Géotechnique, 55(7), 557–567.
  • Cui, Y. J., Gao, Y. B., & Ferber, V. (2010). Simulating the water content and temperature changes in an experimental embankment using meteorological data. Engineering Geology, 141(3–4), 456–471.
  • Cui, Y. J., Ta, A. N., Hemmati, S., Tang, A. M., & Gatmiri, B. (2013). Experimental and numerical investigation of soil-atmosphere interaction. Engineering Geology, 165, 20–28.
  • Dakshanamurthy, V., & Fredlund, D. G. (1981). A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients. Water Resources Research, 17(3), 687–697.
  • De Vries, D. (1963). Thermal properties of soil. In Physics of plant environment (pp. 210–235). Amsterdam: North-Holland.
  • Hawkins, A. B. (2013). Some engineering geological effects of drought: Examples from the UK. Bulletin of Engineering Geology and the Environment, 72(1), 37.
  • Hemmati, S. (2009). Etude de l'interaction Sol-Végétation-Atmosphère avec une approche couplée Thermo-Hydro-Mécanique (PhD Thesis). Ecole Des Ponts Paris-Tech, France.
  • Hemmati, S., Gatmiri, B., Cui, Y. J., & Vincent, M. (2012). Thermo-hydro-mechanical modelling of soil settlements induced by soil-vegetation-atmosphere interactions. Engineering Geology, 139–140, 1–16.
  • Irmak, S., Irmak, A., Allen, R. G., & Jones, J. W. (2003). Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. Journal of Irrigation and Drainage Engineering, 129(5), 336–347.
  • Johansen, O. (1977). Thermal conductivity of soils (PhD Dissertation). Norwegian University of Science and Technology, Trondheim.
  • Kersten, M. (1949). Thermal properties of soils. Engineering Experiment Station Bulletin No. 52. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/124271.
  • Lainas, S., Sabatakakis, N., & Koukis, G. (2016). Rainfall thresholds for possible landslide initiation in wildfire-affected areas of western Greece. Bulletin of Engineering Geology and the Environment, 75(3), 883.
  • Linacre, E. (1992). Climate data and resources: A reference and guide. London: Routledge Press, pp. 149–185.
  • Mathon, D., & Godefroy, A. (2015). Monitoring of an instrumented house damaged by drought. Paper presented at Symposium International SEC, Marne la Vallée–France.
  • Monteith, J. L. (1973). Principles of environmental physics. London: Edward Arnold, 241 p.
  • Monteith, J. L., & Szeicz, G. (1961). The radiation balance of bare soil and vegetation. Quarterly Journal of the Royal Meteorological Society, 87(372), 159–170.
  • Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522.
  • Nikoosokhan, S., Nowamooz, H., & Chazallon, C. (2015). Temperature variations in unfrozen soils with variable hydrothermal properties. European Journal of Soil Science, 66(2), 378–388.
  • Notton, G., Cristofari, C., & Poggi, P. (2006). Performance evaluation of various hourlyslope irradiation models using Mediterranean experimental data of Ajaccio. Energy Conversion Management, 47(2), 147–173.
  • Nowamooz, H., & Masrouri, F. (2010). Mechanical behaviour of expansive soils after several drying and wetting cycles. Geomechanics and Geoengineering, 5(4), 213–221.
  • Nowamooz, H., Nikoosokhan, S., Lin, J., & Chazallon, C. (2015). Finite difference modelling of heat distribution in multilayer soils with time-spatial hydrothermal properties. Renewable Energy, 76, 7–15.
  • Lu, S., Ren, T., Gong, Y., & Horton, R. (2007). An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71(1), 8–14.
  • Ochsner, T. E., Horton, R., & Ren, T. (2001). A new perspective on soil thermal properties. Soil Science Society of America Journal, 65(6), 1641–1647.
  • Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Procedures of the Royal Society of London, Series A, 193, 120–145.
  • Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81–92.
  • Saito, H., Šimůnek, J., & Mohanty, B. P. (2006). Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone Journal, 5(2), 784–800.
  • Santanello, J. A., & Friedl, M. A. (2003). Diurnal covariation in soil heat flux and net radiation. Journal of Applied Meteorology, 42(6), 851–862.
  • Song, W. (2014). Experimental investigation of water evaporation from sand and clay using an environmental chamber (PhD Thesis). Ecole Des Ponts Paris-Tech, France.
  • Sophocleous, M. (1979). Analysis of water and heat flow in unsaturated-saturated porous media. Water Resources Research, 15(5), 1195–1206.
  • Staniec, M., & Nowak, H. (2016). The application of energy balance at the bare soil surface to predict annual soil temperature distribution. Energy and Buildings, 127, 56–65.
  • Ta, A. (2009). Etude de l'interaction sol-atmosphère en chambre environnementale (PhD Thesis). Ecole Des Ponts Paris-Tech, France.
  • Thomas, H. R. (1985). Modelling two-dimensional heat and moisture transfer in unsaturated soils, including gravity effects. International Journal for Numerical and Analytical Methods in Geomechanics, 9(6), 573–588.
  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.
  • Wilson, G. W. (1990). Soil evaporation fluxes for geotechnical engineering problems (PhD Thesis). University of Saskatchewan, Saskatoon.
  • Wilson, G. W., Fredlund, D. G., & Barbour, S. L. (1994). Coupled soil-atmosphere modelling for soil evaporation. Canadian Geotechnical Journal, 31(2), 151–161.
  • Wright, J. L. (1982). New evapotranspiration crop coefficients. Journal of the Irrigation and Drainage Division, 108(IR2), 57–74.
  • Yang, K. H., Uzuoka, R., Thuo, J. N., Lin, G. L., & Nakai, Y. (2017). Coupled hydro-mechanical analysis of two unstable unsaturated slopes subjected to rainfall infiltration. Engineering Geology, 216, 13–30.
  • Xue, Q., Wan, Y., Chen, Y-J., & Zhao, Y. (2014). Experimental research on the evolution laws of soil fabric of compacted clay liner in a landfill final cover under the dry–wet cycle. Bulletin of Engineering Geology and the Environment, 73(2), 517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.