295
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Vision technique for deflection measurements based on laser positioning

, , , , &
Pages 1118-1140 | Received 15 Jun 2019, Accepted 21 Nov 2019, Published online: 02 Dec 2019

References

  • Baker, S., & Matthews, I. (2004). Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer Vision, 56(3), 221–255. doi:10.1023/B:VISI.0000011205.11775.fd
  • Bartilson, D. T., Wieghaus, K. T., & Hurlebaus, S. (2015). Target-less computer vision for traffic signal structure vibration studies. Mechanical Systems and Signal Processing, 60–61, 571–582. doi:10.1016/j.ymssp.2015.01.005
  • Cha, Y.-J., Chen, J. G., & Büyüköztürk, O. (2017). Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters. Engineering Structures, 132, 300–313. doi:10.1016/j.engstruct.2016.11.038
  • Chen, J. G. (2016). Video camera–based vibration measurement for civil infrastructure applications. Journal of Infrastructure Systems, 23(3), B4016013. doi:10.1061/(ASCE)IS.1943-555X.0000348
  • Choi, H.-S. (2011). Structural dynamic displacement vision system using digital image processing. NDT & E International, 44(7), 597–608. doi:10.1016/j.ndteint.2011.06.003
  • Choi, I., Kim, J. H., & Kim, D. (2016). A target-less vision-based displacement sensor based on image convex hull optimization for measuring the dynamic response of building structures. Sensors, 16(12), 2085–2102. doi:10.3390/s16122085
  • Dong, C. Z., Ye, X. W., & Jin, T. (2018). Identification of structural dynamic characteristics based on machine vision technology. Measurement, 126, 405–416. doi:10.1016/j.measurement.2017.09.043
  • Feng, M. Q., Fukuda, Y., Feng, D., & Mizuta, M. (2015). Nontarget vision sensor for remote measurement of bridge dynamic response. Journal of Bridge Engineering, 20(12), 04015023. doi:10.1061/(ASCE)BE.1943-5592.0000747
  • Ferrer, B., Acevedo, P., Espinosa, J., & Mas, D. (2015). Targetless image-based method for measuring displacements and strains on concrete surfaces with a consumer camera. Construction and Building Materials, 75, 213–219. doi:10.1016/j.conbuildmat.2014.11.019
  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. doi:10.1145/358669.358692
  • Guo, T., & Chen, Y.-W. (2011). Field stress/displacement monitoring and fatigue reliability assessment of retrofitted steel bridge details. Engineering Failure Analysis, 18(1), 354–363. doi:10.1016/j.engfailanal.2010.09.014
  • Guo, J., & Zhu, C. (2015). Dynamic displacement measurement of large-scale structures based on the Lucas–Kanade template tracking algorithm. Mechanical Systems and Signal Processing, 66, 425–436. doi:10.1016/j.ymssp.2015.06.004
  • Ji, Y. F., & Chang, C. C. (2008). Nontarget image-based technique for small cable vibration measurement. Journal of Bridge Engineering, 13(1), 34–42. doi:10.1061/(ASCE)1084-0702(2008)13:1(34)
  • Kaloop, M., Elbeltagi, E., Hu, J., & Elrefai, A. (2017). Recent advances of structures monitoring and evaluation using GPS-time series monitoring systems: A review. ISPRS International Journal of Geo-Information, 6(12), 382–399. doi:10.3390/ijgi6120382
  • Kuddus, M. A., Li, J., Hao, H., Li, C., & Bi, K. (2019). Target-free vision-based technique for vibration measurements of structures subjected to out-of-plane movements. Engineering Structures, 190, 210–222. doi:10.1016/j.engstruct.2019.04.019
  • Li, J., & Hao, H. (2016). Health monitoring of joint conditions in steel truss bridges with relative displacement sensors. Measurement, 88, 360–371. doi:10.1016/j.measurement.2015.12.009
  • Li, J., Hao, H., Fan, K., & Brownjohn, J. (2015). Development and application of a relative displacement sensor for structural health monitoring of composite bridges. Structural Control and Health Monitoring, 22(4), 726–742. doi:10.1002/stc.1714
  • Luo, L., Feng, M. Q., & Wu, Z. Y. (2018). Robust vision sensor for multi-point displacement monitoring of bridges in the field. Engineering Structures, 163, 255–266. doi:10.1016/j.engstruct.2018.02.014
  • Nassif, H. H., Gindy, M., & Davis, J. (2005). Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration. Ndt & E International, 38(3), 213–218. doi:10.1016/j.ndteint.2004.06.012
  • Pan, B., Tian, L., & Song, X. (2016). Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation. Ndt & E International, 79, 73–80. doi:10.1016/j.ndteint.2015.12.006
  • Paultre, P., Proulx, J., & Talbot, M. (1995). Dynamic testing procedures for highway bridges using traffic loads. Journal of Structural Engineering, 121(2), 362–376. doi:10.1061/(ASCE)0733-9445(1995)121:2(362)
  • Pedrini, G., Osten, W., & Gusev, M. E. (2006). High-speed digital holographic interferometry for vibration measurement. Applied Optics, 45(15), 3456–3462. doi:10.1364/AO.45.003456
  • Pieraccini, M., Fratini, M., Parrini, F., Macaluso, G., & Atzeni, C. (2004). High-speed CW step-frequency coherent radar for dynamic monitoring of civil engineering structures. Electronics Letters, 40(14), 907–908. doi:10.1049/el:20040549
  • Pieraccini, M., Parrini, F., & Fratini, M. (2007). Static and dynamic testing of bridges through microwave interferometry. Ndt & E International, 40(3), 208–214. doi:10.1016/j.ndteint.2006.10.007
  • Ribeiro, D., Calçada, R., Ferreira, J., & Martins, T. (2014). Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Engineering Structures, 75, 164–180. doi:10.1016/j.engstruct.2014.04.051
  • Rosten, E., Porter, R., & Drummond, T. (2010). Faster and better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 105–119. doi:10.1109/TPAMI.2008.275
  • Rousseeuw, R. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871–880. doi:10.2307/2288718
  • Rublee, E. (2011). ORB: An efficient alternative to SIFT or SURF. In International Conference on Computer Vision 2012.
  • Se, S., Lowe, D., & Little, J. (2002). Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. The International Journal of Robotics Research, 21(8), 735–758. doi:10.1177/027836402761412467
  • Shao, X., Zhang, G., Li, P., & Chen, Y. (2001). Application of ID3 algorithm in knowledge acquisition for tolerance design. Journal of Materials Processing Technology, 117(1–2), 66–74. doi:10.1016/S0924-0136(01)01016-0
  • Sjödahl, M. (1994). Electronic speckle photography: Increased accuracy by nonintegral pixel shifting. Applied Optics, 33(28), 6667–6673. doi:10.1364/AO.33.006667
  • Sjödahl, M. (1997). Accuracy in electronic speckle photography. Applied Optics, 36(13), 2875–2885. doi:10.1364/AO.36.002875
  • Sładek, J., Ostrowska, K., Kohut, P., Holak, K., Gąska, A., & Uhl, T. (2013). Development of a vision based deflection measurement system and its accuracy assessment. Measurement, 46(3), 1237–1249. doi:10.1016/j.measurement.2012.10.021
  • Stiros, S. C., Moschas, F., & Psimoulis, P. A. (2013). GPS/RTS data fusion to overcome signal deficiencies in certain bridge dynamic monitoring projects. Smart Structures and Systems, 12(3–4), 251–269. doi:10.12989/sss.2013.12.3_4.251
  • Tian, L., & Pan, B. (2016). Remote bridge deflection measurement using an advanced video deflectometer and actively illuminated LED targets. Sensors, 16(9), 1344–1358. doi:10.3390/s16091344
  • Torr, P. H. S., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78(1), 138–156. doi:10.1006/cviu.1999.0832
  • Xia, H., De Roeck, G., Zhang, N., & Maeck, J. (2003). Experimental analysis of a high-speed railway bridge under Thalys trains. Journal of Sound and Vibration, 268(1), 103–113. doi:10.1016/S0022-460X(03)00202-5
  • Xu, Y., Brownjohn, J. M. W., Hester, D., & Koo, K. Y. (2017). Long-span bridges: Enhanced data fusion of GPS displacement and deck accelerations. Engineering Structures, 147, 639–651. doi:10.1016/j.engstruct.2017.06.018
  • Yang, Y.‐S., Huang, C.‐W., & Wu, C‐L. (2012). A simple image‐based strain measurement method for measuring the strain fields in an RC‐wall experiment. Earthquake Engineering & Structural Dynamics, 41(1), 1–17. doi:10.1002/eqe.1111
  • Ye, X. W., Ni, Y. Q., Wai, T. T., Wong, K. Y., Zhang, X. M., & Xu, F. (2013). A vision-based system for dynamic displacement measurement of long-span bridges: Algorithm and verification. Smart Structures and Systems, 12(3_4), 363–379. doi:10.12989/sss.2013.12.3_4.363
  • Yoon, H. (2016). Target‐free approach for vision‐based structural system identification using consumer‐grade cameras. Structural Control and Health Monitoring, 23.12, 1405–1416. doi:10.1002/stc.1850
  • Zhang, D., Guo, J., Lei, X., & Zhu, C. (2016). A high-speed vision-based sensor for dynamic vibration analysis using fast motion extraction algorithms. Sensors, 16(4), 572–589. doi:10.3390/s16040572
  • Zhou, H., Yuan, Y., & Shi, C. (2009). Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 113(3), 345–352. doi:10.1016/j.cviu.2008.08.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.