407
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Study on dynamic mechanical properties and meso-damage mechanism of jointed rock under impact load

, , , , &
Pages 1141-1157 | Received 04 Aug 2019, Accepted 17 Nov 2019, Published online: 06 Dec 2019

References

  • Ali, S., Kamran, E., & Bibhu, M. (2018). Degradation of a discrete infilled joint shear strength subjected to repeated blast-induced vibrations. International Journal of Mining Science and Technology, 28(04), 23–33.
  • Attewell, P. B. (1962). Response of rocks to high velocity impact. Transactions of the Institution of Mining and Metallurgy, 71, 705–724.
  • Bell, J. F. (1966). An experimental diffraction grating study of quasi-static hypothesis of the SHPB experiment. Journal of the Mechanics and Physics of Solids, 14(6), 309–327. doi:10.1016/0022-5096(66)90007-X
  • Cao, R. H., Cao, P., & Lin, H. (2018). Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: Experimental studies and particle mechanics approach. Archives of Civil & Mechanical Engineering, 18(01), 198–214.
  • Chocron, S., Dannemann, K. A., Nicholls, A., & Walker, J. D. (2006). Apache leap tuff rock: High strain rate characterization and support simulations. Journal de Physique IV (Proceedings), 134, 565–570. doi:10.1051/jp4:2006134087
  • Dai, F., Huang, S., Xia, K., & Tan, Z. (2010). Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mechanics and Rock Engineering, 43(6), 657–666. doi:10.1007/s00603-010-0091-8
  • Hamid, N. H., Anuar, S. A., Awang, H., & Kori, M. E. (2018). Experimental study on seismic behavior of repaired tunnel form building under cyclic loading. Asian Journal of Civil Engineering, 19(3), 312–343. doi:10.1007/s42107-018-0032-5
  • Hart, R., Cundall, P. A., & Lemos, J. (1988). Formulation of a three-dimensional distinct element model-Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(03), 117–125. doi:10.1016/0148-9062(88)92294-2
  • Huang, D., Wang, J., & Liu, S. (2015). A comprehensive study on the smooth joint model in DEM simulation of jointed rock masses. Granular Matter, 17(6), 775–791. doi:10.1007/s10035-015-0594-9
  • Huang, S., Xia, K. W., & Dai, F. (2012). Establishment of a dynamic Mohr-Coulomb failure criterion for rocks. International Journal of Nonlinear Sciences and Numerical Simulation, 13(1), 55–60. doi:10.1515/ijnsns-2011-120
  • Jie, L., & Wang, J. (2017). Stress evolution of rock-like specimens containing a single fracture under uniaxial loading: A numerical study based on particle flow code. Geotechnical & Geological Engineering, 36(03), 1–14.
  • Lei, X., & Zeng, Y. (2018). Parametric study of smooth joint parameters on the mechanical behavior of transversely isotropic rocks and research on calibration method. Computers and Geotechnics, 98, 1–7. doi:10.1016/j.compgeo.2018.01.012
  • Li, H. (1988). Rock fracture mechanics (pp. 66–84). Chongqing: Chongqing University Press.
  • Li, D. Y., Cheng, T. J., & Zhou, T. (2015). Experimental study of the dynamic strength and fracturing characteristics of marble specimens with a single hole under impact loading. Chinese Journal of Rock Mechanics and Engineering, 34(2), 249–260.
  • Li, D. Y., Han, Z. Y., & Sun, X. L. (2017). Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests. Chinese Journal of Rock Mechanics and Engineering, 36(12), 2872–2883.
  • Li, H., Liu, B., & Feng, H. P. (2008). Study of deformability behaviour and failure mechanism by simulating rock joints sample under different loading conditions. Rock and Soil Mechanics, 29(07), 1741–1746.
  • Li, J. C., Li, N. N., & Li, H. B. (2016). An SHPB test study on wave propagation across rock masses with different contact area ratios of joint. International Journal of Impact Engineering, 105, 109–116. doi:10.1016/j.ijimpeng.2016.12.011
  • Li, X., Zou, Y., & Zhou, Z. (2014). Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method. Rock Mechanics and Rock Engineering, 47(5), 1693–1709. doi:10.1007/s00603-013-0484-6
  • Li, X.B., Zhou, T., & Li, D. Y. (2016). Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split Hopkinson pressure bar. Rock Mechanics and Rock Engineering, 50(01), 1–16. doi:10.1007/s00603-016-1093-y
  • Li, X. F., Li, H. B., & Liu, K. (2017). Dynamic properties and fracture characteristics of rocks subject to impact loading. Chinese Journal of Rock Mechanics and Engineering, 36(10), 2393–2405.
  • Li, W., Zhou, X., Carey, J. W., Frash, L. P., & Cusatis, G. (2018). Multiphysics lattice discrete particle modeling (M-LDPM) for the simulation of shale fracture permeability. Rock Mechanics and Rock Engineering, 51(12), 3963–3981. doi:10.1007/s00603-018-1625-8
  • Liu, W. T., & Shen, J. J. (2016). Experimental study of propagation mode of crack in real rock specimens with a single crack. Chinese Journal of Rock Mechanics and Engineering, 35(06), 1182–1189.
  • Liu, G., Sun, W., Lowinger, S. M., Zhang, Z., Huang, M., & Peng, J. (2019). Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock. Acta Geotechnica, 14(3), 843–868.
  • Lok, T., Li, X., Liu, D. S., & Zhao, P. (2002). Testing and response of large diameter brittle materials subjected to high strain rate. Journal of Materials in Civil Engineering, 14(3), 262–269. doi:10.1061/(ASCE)0899-1561(2002)14:3(262)
  • Ma, L., A, Z. L., & Liu, J. (2017). Mechanical properties of coral concrete subjected to uniaxial dynamic compression. Transactions of Beijing Institute of Technology, 37(12), 1217–1223.
  • Meglis, I. L., Chow, T., Martin, C. D., & Young, R. P. (2005). Assessing in situ microcrack damage using ultrasonic velocity tomography. International Journal of Rock Mechanics and Mining Sciences, 42(1), 25–34. doi:10.1016/j.ijrmms.2004.06.002
  • Meng, H., & Li, Q. M. (2003). Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments. International Journal of Impact Engineering, 28(5), 537–555. doi:10.1016/S0734-743X(02)00073-8
  • Olsson, W. A. (1991). The compressive strength of tuff as a function of strain rate from 10-6 to 103/sec. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 28(01), 115–118. doi:10.1016/0148-9062(91)93241-W
  • Shi, C. (2018). Numerical simulation of particle flow (PFC5.0) and its application [M]. Beijing: China Architecture and Building Press.
  • Shi, Z., Shui, Z., Li, Q., & Geng, H. (2015). Combined effect of metakaolin and sea water on performance and microstructures of concrete. Construction and Building Materials, 74(74), 57–64. doi:10.1016/j.conbuildmat.2014.10.023
  • Xu, Y., Dai, F., Xu, N. W., & Zhao, T. (2016). Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing. Rock Mechanics and Rock Engineering, 49(3), 731–745.
  • Yang, B. D., Jiao, Y., & Lei, S. T. (2006). A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Engineering Computations, 23(6), 607–631.
  • Yang, X. X., & Kulatilake, P. H. S. W. (2019). Effect of joint micro mechanical parameters on a jointed rock block behavior adjacent to an underground excavation: A particle flow approach. Geotechnical & Geological Engineering, 18(03), 1–23.
  • Zhang, X., Jiang, Y., Wang, G., Liu, J., Wang, D., Wang, C., & Sugimoto, S. (2018). Mechanism of shear deformation, failure and energy dissipation of artificial rock joint in terms of physical and numerical consideration. Geosciences Journal, 12(01), 1–11.
  • Zhu, J. B., Liao, Z. Y., & Tang, C. A. (2016). Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses. Rock Mechanics and Rock Engineering, 49(10), 3935–3933 946.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.